Applications of Large Models in Medicine
Abstract
This paper explores the advancements and applications of large‐scale models in the medical field, with a particular focus on Medical Large Models (MedLMs). These models, encompassing Large Language Models (LLMs), Vision Models, 3D Large Models, and Multimodal Models, are revolutionizing healthcare by enhancing disease prediction, diagnostic assistance, personalized treatment planning, and drug discovery. The integration of graph neural networks in medical knowledge graphs and drug discovery highlights the potential of Large Graph Models (LGMs) in understanding complex biomedical relationships. The study also emphasizes the transformative role of Vision‐Language Models (VLMs) and 3D Large Models in medical image analysis, anatomical modeling, and prosthetic design. Despite the challenges, these technologies are setting new benchmarks in medical innovation, improving diagnostic accuracy, and paving the way for personalized healthcare solutions. This paper aims to provide a comprehensive overview of the current state and future directions of large models in medicine, underscoring their significance in advancing global health.
Cite This Paper
Su, Y., Lu, Z., Liu, J., Pang, K., Dai, H., Liu, S., Jia, Y., Ge, L., & Yang, J. (2025). Applications of Large Models in Medicine. AI Med, 1(1), 4. doi:10.71423/aimed.20250105
Su, Y.; Lu, Z.; Liu, J.; Pang, K.; Dai, H.; Liu, S.; Jia, Y.; Ge, L.; Yang, J. Applications of Large Models in Medicine. AI Med, 2025, 1, 4. doi:10.71423/aimed.20250105
Su Y., Lu Z., Liu J. et al.. Applications of Large Models in Medicine. AI Med; 2025, 1(1):4. doi:10.71423/aimed.20250105
Su, Yunhe; Lu, Zhengyang; Liu, Junhui; Pang, Ke; Dai, Haoran; Liu, Sa; Jia, Yuxin, and et al. 2025. "Applications of Large Models in Medicine" AI Med 1, no.1:4. doi:10.71423/aimed.20250105
Share and Cite
Article Metrics
References
- Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. New England Journal of Medicine. 2019;380:1347-1358. doi: 10.1056/NEJMra1814259
- Zhu J, Wang Z, Wang W, et al. Xanthomatous hypophysitis: a case report and comprehensive literature review. Frontiers in Endocrinology.2021;12:735655.
- Zhu J, Wang Z, Zhang Y, et al. Suprasellar pituitary adenomas: a 10-year experience in a single tertiary medical center and a literature review.Pituitary. 2020;23:367–380.
- Zhu J, Lu L, Yao Y, et al. Long-term follow-up for ectopic ACTH-secreting pituitary adenoma in a single tertiary medical center and a literature review. Pituitary. 2020;23:149–159.
- Li X, Deng K, Zhang Y, et al. Pediatric pituitary neuroendocrine tumors–a 13-year experience in a tertiary center. Frontiers in Oncology.2023;13:1270958.
- Xiao H, Zhou F, Liu X, et al. A Comprehensive Survey of Large Language Models and Multimodal Large Language Models in Medicine. arXiv preprint. 2024.
- Park T, Gu P, Kim CH, et al. Artificial intelligence in urologic oncology: the actual clinical practice results of IBM Watson for Oncology in South Korea. Prostate International. 2023;11(4):218-221. doi: https://doi.org/10.1016/j.prnil.2023.09.001
- Boussina A, Krishnamoorthy R, Quintero K, others . Large Language Models for More Efficient Reporting of Hospital Quality Measures. NEJM AI. 2024;1(11):10.1056/aics2400420. doi: 10.1056/aics2400420
- Esteva A, Kuprel B, Novoa RA, Ko J. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature. 2017;542(7639):115-118. doi: 10.1038/nature21056
- Zhou H, Liu F, Gu B, et al. A Survey of Large Language Models in Medicine: Progress, Application, and Challenge. arXiv preprint. 2023.
- Yang Z, Li L, Wang S. 3D Medical Image Segmentation using Convolutional Neural Networks. Journal of Medical Imaging. 2020. doi: 10.1117/1.JMI.7.3.031502
- Wu Z, Zhang X, Wei X. Graph Neural Networks for Medical Data Analysis. IEEE Transactions on Neural Networks and Learning Systems. 2022.doi: 10.1109/TNNLS.2022.3185390
- Jumper J, Evans R, Pritzel A, al. e. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596(7873):583-589. doi: 10.1038/s41586-021-03819-2
- Singhal K, Azizi S, Tu T, others . Large language models encode clinical knowledge. Nature. 2023;620(7972):172–180. doi: 10.1038/s41586023-06291-2
- Distilling step-by-step: Outperforming larger language models with less training. .
- Singhal K, Tu T, Gottweis J, others . Towards Expert-Level Medical Question Answering with Large Language Models. arXiv preprint. 2023.doi: 10.48550/arXiv.2305.09617
- Peng Y, Yan S, Lu Z. Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets. arXiv preprint. 2019. doi: 10.48550/arXiv.1906.05474
- Huang K, Mo F, Li H, others . A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers. arXiv preprint.2024. doi: 10.48550/arXiv.2405.10936
- The future landscape of large language models in medicine. .
- Nori H, King N, McKinney SM, Carignan D, Horvitz E. Capabilities of GPT-4 on Medical Challenge Problems. arXiv preprint. 2023. doi: 10.48550/arXiv.2303.13375
- MedExQA: Medical Question Answering Benchmark with Multiple Explanations. .
- Krithara A, Nentidis A, Bougiatiotis K, Paliouras G. BioASQ-QA: A manually curated corpus for Biomedical Question Answering. Scientific Data. 2023;10(1):170. doi: 10.1038/s41597-023-02068-4
- Shahsavar Y, Choudhury A. User Intentions to Use ChatGPT for Self-Diagnosis and Health-Related Purposes: Cross-sectional Survey Study.JMIR Human Factors. 2023;10:e47564. doi: 10.2196/47564
- Monteiro MG, Pantani D, Pinsky I, Rocha TAH. The development of the Pan American Health Organization digital health specialist on alcohol use. Frontiers in Digital Health. 2022;4. doi: 10.3389/fdgth.2022.948187
- Kuroiwa T, Sarcon A, Ibara T, others . The Potential of ChatGPT as a Self-Diagnostic Tool in Common Orthopedic Diseases: Exploratory Study.Journal of Medical Internet Research. 2023;25(1):e47621. doi: 10.2196/47621
- Wimbarti S, Kairupan BHR, Tallei TE. Critical review of self-diagnosis of mental health conditions using artificial intelligence. International Journal of Mental Health Nursing. 2024;33(2):344–358. doi: 10.1111/inm.13303
- Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions. Funded by National Key R&D Program of China (No.
- 2021YFF0901400).
- Chen A, Stanovsky G, Singh S, Gardner M. Evaluating Question Answering Evaluation. In: Association for Computational Linguistics 2019:119–124
- Abbasian M, Khatibi E, Azimi I, others . Foundation metrics for evaluating effectiveness of healthcare conversations powered by generative AI.npj Digital Medicine. 2024;7(1):1–14. doi: 10.1038/s41746-024-01074-z
- Farhud DD, Zokaei S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iranian Journal of Public Health. 2021;50(11):i–v.doi: 10.18502/ijph.v50i11.7600
- Bao J, Sun H, Deng H, He Y, Zhang Z, Li X. Bmad: Benchmarks for medical anomaly detection. In: 2024:4042–4053.
- Zhou Q, Pang G, Tian Y, He S, Chen J. Anomalyclip: Object-agnostic prompt learning for zero-shot anomaly detection. arXiv preprint arXiv:2310.18961. 2023.
- Zhang S, Xu Y, Usuyama N, et al. BiomedCLIP: a multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs. arXiv preprint arXiv:2303.00915. 2023.
- Huang C, Jiang A, Feng J, Zhang Y, Wang X, Wang Y. Adapting visual-language models for generalizable anomaly detection in medical images.
- In: 2024:11375–11385.
- Park Y, Kim MJ, Kim HS. Contrastive Language Prompting to Ease False Positives in Medical Anomaly Detection. arXiv preprint arXiv:2411.07546. 2024.
- Aleem S, Wang F, Maniparambil M, et al. Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero-shot Medical Image Segmentation. In: 2024:5184–5193.
- Koleilat T, Asgariandehkordi H, Rivaz H, Xiao Y. Medclip-samv2: Towards universal text-driven medical image segmentation. arXiv preprint arXiv:2409.19483. 2024.
- Wolleb J, Bieder F, Sandkühler R, Cattin PC. Diffusion models for medical anomaly detection. In: Springer. 2022:35–45.
- Fontanella A, Mair G, Wardlaw J, Trucco E, Storkey A. Diffusion models for counterfactual generation and anomaly detection in brain images.IEEE Transactions on Medical Imaging. 2024.
- Behrendt F, Bhattacharya D, Maack L, et al. Diffusion Models with Ensembled Structure-Based Anomaly Scoring for Unsupervised Anomaly Detection. arXiv preprint arXiv:2403.14262. 2024.
- Iqbal H, Khalid U, Chen C, Hua J. Unsupervised anomaly detection in medical images using masked diffusion model. In: Springer. 2023:372–381.
- Fan K, Cai X, Niranjan M. Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI. arXiv preprint arXiv:2405.04974. 2024.
- Wu J, Ji W, Fu H, Xu M, Jin Y, Xu Y. Medsegdiff-v2: Diffusion-based medical image segmentation with transformer. In: . 38. 2024:6030–6038.
- Tian Y, Liu F, Pang G, et al. Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical image analysis. 2023;90:102930.
- Zhang Z, Sun Z, Liu Z, et al. Spatial-Aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image.In: Springer. 2024:638–648.
- Cai Y, Chen H, Yang X, Zhou Y, Cheng KT. Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images. Medical Image Analysis. 2023;86:102794.
- Özbey M, Dalmaz O, Dar SU, et al. Unsupervised medical image translation with adversarial diffusion models. IEEE Transactions on Medical Imaging. 2023.
- Amit T, Shichrur S, Shaharabany T, Wolf L. Annotator consensus prediction for medical image segmentation with diffusion models. In: Springer.2023:544–554.
- Liang Z, Anthony H, Wagner F, Kamnitsas K. Modality cycles with masked conditional diffusion for unsupervised anomaly segmentation in mri.In: Springer. 2023:168–181.
- Li Y, Shao HC, Liang X, et al. Zero-shot medical image translation via frequency-guided diffusion models. IEEE transactions on medical imaging.2023.
- Amerikanos P, Maglogiannis I. Image Analysis in Digital Pathology Utilizing Machine Learning and Deep Neural Networks. Journal of Personalized Medicine. 2022;12(9).
- Gali I, others . Machine learning empowering personalized medicine: A comprehensive review of medical image analysis methods. Electronics.2023;12(21):4411.
- Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Springer 2015.
- Dai D, others . I2U-Net: A dual-path U-Net with rich information interaction for medical image segmentation. Medical Image Analysis.2024:103241.
- Liang B, others . N-Net: an UNet architecture with dual encoder for medical image segmentation. Signal, Image and Video Processing.2023;17(6):3073-3081.
- Ouz A, Erturul OF. Introduction to deep learning and diagnosis in medicine. In: , , Elsevier, 2023:1-40.
- Chen S, others . EncoderDecoder Structure Fusing Depth Information for Outdoor Semantic Segmentation. Applied Sciences. 2023;13(17):9924.
- Xu G, others . Development of Skip Connection in Deep Neural Networks for Computer Vision and Medical Image Analysis: A Survey. arXiv preprint arXiv:2405.01725. 2024.
- Oktay O, others . Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999. 2018.
- Fabijaska A. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network. Artificial intelligence in medicine.2018;88:1-13.
- Singh I, Lele T. Nuclear Morphological abnormalities in Cancer: a search for unifying mechanisms. In: , , Springer, 2022:443-467.
- Mavuduru A, others . Using a 22-layer U-Net to perform segmentation of squamous cell carcinoma on digitized head and neck histological images. In: NIH Public Access 2020.
- Faryna K, Laak v. dJ, Litjens G. Automatic data augmentation to improve generalization of deep learning in H&E stained histopathology.Computers in Biology and Medicine. 2024;170:108018.
- Goodfellow I, others . Generative adversarial nets. In: . 27. 2014.
- Zhao W, Mahmoud Q, Alwidian S. Evaluation of GAN-based model for adversarial training. Sensors. 2023;23(5):2697.
- Figueira A, Vaz B. Survey on Synthetic Data Generation, Evaluation Methods and GANs. Mathematics. 2022;10:2733.
- Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. arXiv. 2018. arXiv preprint arXiv:1812.04948.
- Melnik A, others . Face generation and editing with stylegan: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2024.
- Sauer A, Schwarz K, Geiger A. Stylegan-xl: Scaling stylegan to large diverse datasets. In: 2022.
- Li W, others . High resolution histopathology image generation and segmentation through adversarial training. Medical Image Analysis.2022;75:102251.
- Juang CF, others . Deep learning-based glomerulus detection and classification with generative morphology augmentation in renal pathology images. Computerized Medical Imaging and Graphics. 2024;115:102375.
- Tschuchnig M, Gadermayr M. Anomaly detection in medical imaging-a mini review. In: Springer 2021.
- Zingman I, others . Learning image representations for anomaly detection: application to discovery of histological alterations in drug development.
- Medical Image Analysis. 2024;92:103067.
- Qin J, others . A biological image classification method based on improved CNN. Ecological Informatics. 2020;58:101093.
- Esteva A, others . Dermatologist-level classification of skin cancer with deep neural networks. nature. 2017;542(7639):115-118.
- Tavolara T, Gurcan M, Niazi M. Contrastive multiple instance learning: An unsupervised framework for learning slide-level representations of whole slide histopathology images without labels. Cancers. 2022;14(23):5778.
- Hassanaly R, others . Evaluation of pseudo-healthy image reconstruction for anomaly detection with deep generative models: Application to brain FDG PET. arXiv preprint arXiv:2401.16363. 2024.
- Liu H, Zhang Y, Luo J. Contrastive learning-based histopathological features infer molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide images. Computers in Biology and Medicine. 2024;170:107997.
- Zehnder P, others . Multiscale generative model using regularized skip-connections and perceptual loss for anomaly detection in toxicologic histopathology. Journal of Pathology Informatics. 2022;13:100102.
- Singh H, Kaur H. A Systematic Survey on Biological Cell Image Segmentation and Cell Counting Techniques in Microscopic Images Using Machine Learning. Wireless Personal Communications. 2024;137(2):813-851.
- Ruiz-Casado J, Molina-Cabello M, Luque-Baena R. Enhancing Histopathological Image Classification Performance through Synthetic Data Generation with Generative Adversarial Networks. Sensors. 2024;24(12):3777.
- Gu Q, others . Using an anomaly detection approach for the segmentation of colorectal cancer tumors in whole slide images. Journal of Pathology Informatics. 2023;14:100336.
- Durkee M, others . Artificial intelligence and cellular segmentation in tissue microscopy images. The American journal of pathology.
- 2021;191(10):1693-1701.
- Jaroensri R, others . Deep learning models for histologic grading of breast cancer and association with disease prognosis. NPJ Breast cancer.
- 2022;8(1):113.
- Moor M, others . Foundation models for generalist medical artificial intelligence. Nature. 2023;616(7956):259-265.
- Han K, others . Transformer in transformer. In: . 34. 2021:15908-15919.
- Sheng JC, Liao YS, Huang CR. Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images. In: IEEE 2023.
- Ding J, others . Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint arXiv:2307.02486. 2023.
- Xu H, others . A whole-slide foundation model for digital pathology from real-world data. Nature. 2024:1-8.
- Vorontsov E, others . A foundation model for clinical-grade computational pathology and rare cancers detection. Nature medicine. 2024:1-12.
- Chen R, others . Towards a general-purpose foundation model for computational pathology. Nature Medicine. 2024;30(3):850-862.
- Lu M, others . A visual-language foundation model for computational pathology. Nature Medicine. 2024;30(3):863-874.
- Jin S, others . Automatic three-dimensional nasal and pharyngeal airway subregions identification via Vision Transformer. J Dent.
- 2023;136:104595.
- Park S, Shin Y. Generative convolution layer for image generation. Neural Netw. 2022;152:370-379.
- Cao P, others . Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images. Hum Reprod. 2024;39(6):1197-1207.
- Modak S, Stein A. Generative AI-based Pipeline Architecture for Increasing Training Efficiency in Intelligent Weed Control Systems. arXiv preprint arXiv:2411.00548. 2024.
- Bordes F, others . An Introduction to Vision-Language Modeling. arXiv preprint. 2024.
- Sarvamangala DR, Kulkarni RV. Convolutional Neural Networks in Medical Image Understanding: A Survey. Evolutionary Intelligence.
- 2022;15(1):1–22. doi: 10.1007/s12065-020-00540-3
- Kourounis G, Elmahmudi AA, Thomson B, others . Computer Image Analysis with Artificial Intelligence: A Practical Introduction to Convolutional Neural Networks for Medical Professionals. Postgraduate Medical Journal. 2023;99(1178):1287–1294. doi: 10.1093/postmj/qgad095
- Gao J, others . GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images. arXiv preprint. 2022.
- Jia H, Zhang J, Ma K, others . Application of Convolutional Neural Networks in Medical Images: A Bibliometric Analysis. Quantitative Imaging in Medicine and Surgery. 2024;14(5):3501–3518. doi: 10.21037/qims-23-1600
- Vaid A, Jiang J, Sawant A, others . A Foundational Vision Transformer Improves Diagnostic Performance for Electrocardiograms. npj Digital Medicine. 2023;6:108. doi: 10.1038/s41746-023-00840-9
- Mulkey MA, Huang H, Albanese T, others . Supervised Deep Learning with Vision Transformer Predicts Delirium Using Limited Lead EEG.Scientific Reports. 2023;13:7890. doi: 10.1038/s41598-023-35004-y
- Qi N, Piao Y, Zhang H, others . Seizure Prediction Based on Improved Vision Transformer Model for EEG Channel Optimization. Computer Methods in Biomechanics and Biomedical Engineering. 2024. doi: 10.1080/10255842.2024.2326097
- Liu X, Hu L, Tie L, others . Integration of Convolutional Neural Network and Vision Transformer for Gesture Recognition Using sEMG.Biomedical Signal Processing and Control. 2024;98:106686. doi: 10.1016/j.bspc.2024.106686
- Córdova JC, others . EMGTFNet: Fuzzy Vision Transformer to Decode Upperlimb sEMG Signals for Hand Gestures Recognition. In: 2023:1–6.
- Wang S, Zheng J, Huang Z, others . Integrating Computer Vision to Prosthetic Hand Control with sEMG: Preliminary Results in Grasp Classification. Frontiers in Robotics and AI. 2022;9:948238. doi: 10.3389/frobt.2022.948238
- Open Sourcing Surface Electromyography Datasets at NeurIPS 2024. 2024.
- Singh SP, Wang L, Gupta S, others . 3D Deep Learning on Medical Images: A Review. Sensors. 2020;20(18):5097. doi: 10.3390/s20185097
- Sun Z. 3D Printing in Medicine: Current Applications and Future Directions. Quantitative Imaging in Medicine and Surgery.
- 2018;8(11):1069–1077. doi: 10.21037/qims.2018.12.06
- Manero A, Smith P, Sparkman J, others . Implementation of 3D Printing Technology in the Field of Prosthetics: Past, Present, and Future.International Journal of Environmental Research and Public Health. 2019;16(9):1641. doi: 10.3390/ijerph16091641
- Tien RN, Tekriwal A, Calame DJ, others . Deep Learning Based Markerless Motion Tracking as a Clinical Tool for Movement Disorders.
- Frontiers in Signal Processing. 2022;2. doi: 10.3389/frsip.2022.884384
- Lorenz EA, Su X, Skjæret-Maroni N. A Review of Combined Functional Neuroimaging and Motion Capture for Motor Rehabilitation. Journal of NeuroEngineering and Rehabilitation. 2024;21:3. doi: 10.1186/s12984-023-01294-6
- Lee YS, Park WH. Diagnosis of Depressive Disorder Model on Facial Expression Based on Fast R-CNN. Diagnostics. 2022;12(2):317. doi: 10.3390/diagnostics12020317
- Liu D, Liu B, Lin T, others . Measuring Depression Severity Based on Facial Expression and Body Movement Using Deep Convolutional Neural Network. Frontiers in Psychiatry. 2022;13. doi: 10.3389/fpsyt.2022.1017064
- Lim WS, Chiu SI, Wu MC, others . An Integrated Biometric Voice and Facial Features for Early Detection of Parkinsons Disease. npj Parkinson’s Disease. 2022;8:145. doi: 10.1038/s41531-022-00414-8
- [Title Not Provided]. arXiv preprint; 2023.
- Yao Y, Mei X, Xu J, others . VLM-EMO: Context-Aware Emotion Classification with CLIP. In: 2024:1615–1620
- Zhao Z, Patras I. Prompting Visual-Language Models for Dynamic Facial Expression Recognition. In: 2023.
- Li Z, others . LViT: Language Meets Vision Transformer in Medical Image Segmentation. IEEE Transactions on Medical Imaging. 2022;43:96–107.doi: 10.1109/TMI.2023.XXXXXXX
- Hartsock I, Rasool G. Vision-Language Models for Medical Report Generation and Visual Question Answering: A Review. Frontiers in Artificial Intelligence. 2024;7. doi: 10.3389/frai.2024.1430984
- Tang Y, others . Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis. In: 2022:20698–20708
- Lee HH, others . 3D UX-Net: A Large Kernel Volumetric ConvNet Modernizing Hierarchical Transformer for Medical Image Segmentation.arXiv preprint. 2022.
- Wang H, others . 3D MedDiffusion: A 3D Medical Diffusion Model for Controllable and High-Quality Medical Image Generation. arXiv preprint.
- Bui I, Bhattacharya A, Wong SH, others . Role of Three-Dimensional Visualization Modalities in Medical Education. Frontiers in Pediatrics.
- 2021;9:760363. doi: 10.3389/fped.2021.760363
- Ardila CM, González-Arroyave D, Zuluaga-Gómez M. Efficacy of Three-Dimensional Models for Medical Education: A Systematic Scoping Review of Randomized Clinical Trials. Heliyon. 2023;9(2):e13395. doi: 10.1016/j.heliyon.2023.e13395
- Bao G, Yang P, Yi J, others . Full-Sized Realistic 3D Printed Models of Liver and Tumour Anatomy: A Useful Tool for the Clinical Medicine Education of Beginning Trainees. BMC Medical Education. 2023;23:574. doi: 10.1186/s12909-023-04535-3
- Song H, Hsieh TH, Yeon SH, others . Continuous Neural Control of a Bionic Limb Restores Biomimetic Gait After Amputation. Nature Medicine.2024;30:2010–2019. doi: 10.1038/s41591-024-02994-9
- [Title Not Provided]. arXiv preprint; 2024.
- Raheem AA, Hameed P, Whenish R, others . A Review on Development of Bio-Inspired Implants Using 3D Printing. Biomimetics. 2021;6(4):65.doi: 10.3390/biomimetics6040065
- Meng M, Wang J, Huang H, others . 3D Printing Metal Implants in Orthopedic Surgery: Methods, Applications and Future Prospects. Journal of Orthopaedic Translation. 2023;42:94–112. doi: 10.1016/j.jot.2023.08.004
- Patrick-Krueger KM, Burkhart I, Contreras-Vidal JL. The State of Clinical Trials of Implantable BrainComputer Interfaces. Nature Reviews Bioengineering. 2025;3:50–67. doi: 10.1038/s44222-024-00239-5
- Zhang Z, Li H, Zhang Z, Qin Y, Wang X, Zhu W. Graph Meets LLMs: Towards Large Graph Models. 2023.
- Data MC, Nair S, Hsu D, Celi LA. Challenges and opportunities in secondary analyses of electronic health record data. Secondary analysis of electronic health records. 2016:17–26.
- Nelson CA, Butte AJ, Baranzini SE. Integrating Biomedical Research and Electronic Health Records to Create Knowledge Based Biologically Meaningful Machine Readable Embeddings. bioRxiv. 2019. doi: 10.1101/540963
- Johnson R, Li MM, Noori A, Queen O, Zitnik M. Graph AI in Medicine. 2023.
- Kim BH, Ye JC, Kim JJ. Learning Dynamic Graph Representation of Brain Connectome with Spatio-Temporal Attention. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang P, Vaughan JW., eds. Advances in Neural Information Processing Systems. 34. Curran Associates, Inc. 2021:4314–4327.
- Zhang H, Song R, Wang L, et al. Classification of Brain Disorders in rs-fMRI via Local-to-Global Graph Neural Networks. IEEE Transactions on Medical Imaging. 2023;42(2):444-455. doi: 10.1109/TMI.2022.3219260
- Huang K, Chandak P, Wang Q, et al. Zero-shot drug repurposing with geometric deep learning and clinician centered design. medRxiv. 2024. doi: 10.1101/2023.03.19.23287458
- Gao Y, Li R, Caskey J, et al. Leveraging A Medical Knowledge Graph into Large Language Models for Diagnosis Prediction. 2023.
- Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: predicting drugtarget binding affinity with graph neural networks.Bioinformatics. 2020;37(8):1140-1147. doi: 10.1093/bioinformatics/btaa921
- Sosa DN, Derry A, Guo M, Wei E, Brinton C, Altman RB. A Literature-Based Knowledge Graph Embedding Method for Identifying Drug Repurposing Opportunities in Rare Diseases. bioRxiv. 2019. doi: 10.1101/727925
- Zhao S, Cui Z, Zhang G, Gong Y, Su L. MGPPI: multiscale graph neural networks for explainable proteinprotein interaction prediction. Frontiers in Genetics. 2024;15. doi: 10.3389/fgene.2024.1440448
- He G, Liu J, Liu D, Zhang G. GraphGPSM: a global scoring model for protein structure using graph neural networks. Briefings in Bioinformatics.2023;24(4):bbad219. doi: 10.1093/bib/bbad219