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ABSTRACT

In recent years, advancements in gene structure prediction have been significantly driven by

the integration of deep learning technologies into bioinformatics. Transitioning from

traditional thermodynamics and comparative genomics methods to modern deep

learning-based models, such as CDSBERT, DNABERT, RNA-FM, and PlantRNA-FM

prediction accuracy and generalization have seen remarkable improvements. These models,

leveraging genome sequence data along with secondary and tertiary structure information,

have facilitated diverse applications in studying gene functions across animals, plants, and

humans. They also hold substantial potential for multi-application in early disease diagnosis,

personalized treatment, and genomic evolution research. This review combines traditional

gene structure prediction methods with advancements in deep learning, showcasing

applications in functional region annotation, protein-RNA interactions, and cross-species

genome analysis. It highlights their contributions to animal, plant, and human disease research

while exploring future opportunities in cancer mutation prediction, RNA vaccine design, and

CRISPR gene editing optimization. The review also emphasizes future directions, such as
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model refinement, multimodal integration, and global collaboration. By offering a concise

overview and forward-looking insights, this article aims to serve as a fundamental resource

and guide for advancing nucleic acid structure prediction research.
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HIGHLIGHTS

 Revolutionizing gene structure prediction with deep learning:

Advanced models like DNABERT, CDSBERT, and RNA-FM significantly enhance

accuracy in functional region annotation, regulatory element identification, and

cross-species genomic analysis.

 Integrating multimodal data for comprehensive genomic insights:

Combining sequence, structure, and functional data through AI-driven models facilitates

more accurate gene function predictions and enhances evolutionary and comparative

genomic studies.

 Transforming disease research and personalized medicine:

Deep learning-based gene structure prediction enables breakthroughs in early disease

detection, RNA vaccine design, CRISPR optimization, and precision medicine.

INTRODUCTION

Before, the Human Genome Project and various organismal sequencing initiatives have

produced an unprecedented abundance of biological data. The growing demand for data

analysis and interpretation is being addressed by the evolving field of bioinformatics, applies

computational methods to process, analyze, and interpret biological data 1. The field of gene

structure prediction has become a key research area in genetics, evolutionary biology, and

disease research. Accurately predicting gene structure is essential for unraveling the

complexity of gene function and regulation, with far-reaching implications across multiple

fields. It plays a crucial role in advancing targeted medical therapies, deepening our



understanding of evolutionary processes, and identifying genetic variants linked to diseases,

ultimately driving innovations in healthcare and genomics research discovery. Within the field

of gene structure prediction, despite the encouraging progress made in this field, there are still

some challenges and bottlenecks. A key challenge lies in the intrinsic complexity of genome

sequences, exhibiting significant variability and nonlinear patterns. This complexity poses a

challenge for traditional machine learning algorithms, making it difficult to accurately discern

underlying biological patterns.

Recent progress in data-driven approaches, particularly with the rise of machine learning and

deep learning models, which have transformed gene structure prediction by enabling the

analysis of large genomic datasets with unparalleled accuracy and efficiency 2. With

advancements in science and technology, the integration of machine learning and deep

learning into genomic research has introduced new avenues for exploring the intricate

relationship between gene sequences and their functional outcomes, thereby deepening our

understanding of biological systems 3. Moreover, deep learning-based models like Fusion AI

can adapt to diverse genomic data types, enabling researchers to more accurately identify

fusion genes and gain deeper insights into genomic breakage, making them versatile tools for

applications across multiple kinds of species 4. As these models continue to evolve, they will

have the potential to deepen our understanding of gene regulation and expression, and paving

the way for advancements in disease prediction, personalized medicine, genome sequencing,

gene expression analysis, protein structure modeling, drug discovery, and disease diagnostics

5.

Addressing these challenges requires ongoing research to improve data quality, develop

powerful algorithms, and enhance the interpretability of predictive models. To date, deep

learning approaches have demonstrated significant advantages in integrating AI-driven

techniques across various aspects of biological research. The utilized tools include DeepBind,

DeepCpG, DeepGene, DeepFam, DeepLoc, DeepPath, ScanNet, and DeepVariant 6. In

addition, since the quality and completeness of genomic datasets can significantly affect the

performance of prediction models, incomplete annotations and differences in gene structure



between different databases are likely to lead to inaccurate predictions 7. Therefore, deep

learning model training necessitates a substantial volume of labeled data, that also poses

challenges, especially in understudied species where genomic data may be scarce. For

example, DRANetSplicer is designed to predict splice sites across different species by

leveraging cross-organism validation 8. To overcome the challenges, recent breakthroughs in

deep learning have transformed gene structure prediction by harnessing large genomic

datasets with advanced neural network architectures. By integrating primary sequence data

with secondary and tertiary structural information, these models have significantly improved

functional region annotation, regulatory element identification, and cross-species genomic

comparisons. By overcoming some of the shortcomings and obstacles, the field of gene

structure prediction can continue to advance, ultimately deepening the understanding of its

impact on human health and disease treatment.

RESULTS

Predicting the structure of DNA and RNA is fundamental to understanding gene regulation,

transcription, translation, and molecular interactions. DNA structure prediction focuses on

identifying sequence properties such as helical stability, conformational dynamics, binding

affinities, and methylation sites, which are crucial for locating regulatory elements like

promoters and enhancers. RNA structure prediction, on the other hand, determines secondary

and tertiary folding patterns that influence RNA stability, function, and interactions with

proteins. Precise structural predictions offer valuable insights into gene function,

RNA-protein interactions, and various applications, including RNA-based therapeutics such

as mRNA vaccines. Over time, the DNA and RNA structures prediction methods have

advanced from thermodynamic models based on free energy minimization to comparative

sequence alignment techniques. While these traditional approaches provided foundational

insights, they often struggled with computational limitations and species-specific variations.

The emergence of machine learning and deep learning has revolutionized discipline, enabling

the extraction of complex patterns from large genomic datasets with high accuracy. We

collected Time-Lapse with selected representative software in gene structure prediction,

which provides a systematic overview of the evolution of methodologies for DNA (Figure 1A)



and RNA (Figure 1B) structure prediction, illustrating key advancements across different

computational approaches. These methodologies are categorized into thermodynamic

methods, comparative alignment methods, and deep learning methods, demonstrating their

historical progression and impact on nucleic acid structural analysis. These tools and

resources are available for the analysis of DNA/RNA structures. In a certain era, they have

representative significance. The timeline presented (Figure 1) shows the progression from

traditional alignment and thermodynamic-based methods to modern machine learning and

deep learning techniques, underscoring their increasing sophistication and predictive power.

These computational tools serve as critical resources for genomic research, RNA structural

modeling, functional annotation, and biomedical applications, facilitating advancements in

cancer research, gene regulation studies, and molecular diagnostics. Understanding this

progression highlights how technological advancements have transformed our ability to

decode nucleic acid structures, paving the way for more precise applications in functional

genomics, disease research, and biotechnological innovations.

Traditional Methods for Gene Sequence and Structural Analysis

Early Methods

Early methods for gene sequence and structure analysis revolved around basic sequence

alignment techniques and manual curation of genomic data and thermodynamic models.

Although very fundamental, these methods are fundamentally constrained by their

dependence on direct sequence comparisons and the manual curation of genetic features. The

introduction of sequence alignment algorithms marked a major advance in the field. However,

these methods are computationally intensive and often require a lot of time and expertise to

accurately interpret the results. The reliance on manual curation means that many genomic

sequences are still poorly annotated, resulting in gaps in deciphering gene function and

architecture. Moreover, early methods lacked the ability to process and manage the vast

volumes of data produced by modern sequencing technologies, necessitating the advancement

of more sophisticated computational tools and models capable of efficiently processing and

analyzing genomic data 9,10.



Thermodynamic Models

(e.g., Gene Structure and RNA Secondary Structure Prediction)

Thermodynamic Models were used for both DNA and RNA structure analysis.

Thermodynamic models, particularly those used for predicting RNA secondary structures,

represent a significant advancement in the analysis of gene sequences. These models apply

thermodynamic principles to determine the most stable RNA configurations based on their

nucleotide sequences. The free energy minimization approach allows researchers to infer

potential secondary structures by calculating the stability of various folding patterns.

Thermodynamic models for DNA structure analysis are methods used to predict and evaluate

DNA structures based on thermodynamic principles, such as free energy minimization,

base-pair stability, and stacking interactions. These models rely on experimentally derived

parameters to understand DNA folding, hybridization, and secondary structure formation

Tools such as OligoAnalyzer (Predicts DNA duplex stability and melting temperature), Mfold

(Predicts DNA secondary structures based on free energy minimization), UNAFold

(Integrates various thermodynamic models for DNA and RNA analysis), ViennaRNA (RNA

secondary structure prediction and comparison) and RNAfold (Processes individual RNA

sequences and calculates their minimum free energy structures) have become standard in the

field, enabling researchers to visualize and predict RNA structures efficiently. However, these

models are not without limitations; they often rely on idealized conditions that may not

accurately reflect the complexities of biological environments. Furthermore, the prediction

accuracy can be influenced by the presence of non-canonical base pairs and the dynamic

nature of RNA folding, which can complicate the interpretation of results 9.

Comparative Genomics and Sequence Alignment Methods

Comparative genomics has become a valuable approach for exploring evolutionary

relationships and functional genomics 11. By analyzing and comparing genomes across

species, researchers can detect conserved sequences and deduce gene functions through



homology-based methods such as BLAST 12. Other sequence alignment methods, including

multiple sequence alignment (MSA) algorithms, have been developed to facilitate these

comparisons.

The first truly practical approach to MSA was developed by 1987 by Needleman–Wunsch

alignment 13. Widely used global sequence alignment algorithms include Optimal and

Heuristic-based methods such as AlignMe, Needleman-Wunsch, GLASS, WABA, AVID, and

CHAOS. In contrast, the most utilized local sequence alignment algorithms include

Smith-Waterman, FASTA, BLAST, BLASTZ, PatternHunter, YASS, LAMBDA, USearch,

LAST, and ALLAlign 14. Local sequence alignments are specifically designed to identify

matching subregions within two sequences, typically requiring less computational time

compared to global alignment algorithms 15. The Smith-Waterman algorithm is built on a

technique known as Dynamic Programming. To address the limitations of optimal algorithms,

heuristic algorithms were later developed as one of the more efficient alternatives. The

earliest heuristic algorithm, FASTA (Fast-All), was developed by Lipman and Pearson as an

efficient approach to sequence alignment 15. BLAST utilizes a look-up table to detect seed

matches, making it faster than FASTA 16.

TABLE 1. (Modified from 17) provides an overview of multiple sequence alignment (MSA)

tools, comparing their input formats, output formats, sequence types, methods, and server

availability. It includes widely used tools like CLUSTAL OMEGA, MAFFT, MUSCLE,

KALIGN, RETALIGN, and PROBCONS, each employing different alignment strategies such

as progressive, iterative, and probabilistic consistency-based methods. These tools support

protein, DNA, and RNA sequence alignment, facilitating accurate evolutionary and functional

genomics studies. This table also includes links to their respective online servers for easy

access.

This phylogenetic analysis can take weeks to complete, even when performed on

High-Performance Computing (HPC) systems 18. Multiple Sequence Alignment (MSA) is a

fundamental technique in comparative genomics and sequence alignment. It is widely utilized

in phylogenetic analysis to construct evolutionary trees, allowing researchers to determine



evolutionary connections among homologous genes. By aligning three or more biological

sequences. Tools like Clustal Omega, MAFFT, MUSCLE, and MEGA enable simultaneous

alignment of multiple sequences, offering insights into evolutionary conservation and

divergence. However, the accuracy of MSA relies heavily on the quality of input data and the

availability of computational resources. In addition, the presence of highly divergent

sequences complicates alignment accuracy, leading to potential misinterpretations of

evolutionary relationships. Therefore, improving algorithms to handle large data sets and

accounting for the complexity of genomic evolution has become a new challenge 17.

Gene structure prediction can be broadly categorized into RNA-Seq-based methods,

homology-based techniques, and either individual prediction models or integrative methods

that combine multiple approaches for enhanced accuracy. Integrative methods enhance

prediction accuracy by merging multiple approaches or selecting the most reliable individual

prediction outcomes; GINGER uses Next flow to predict gene structure, which enhances

prediction accuracy at the exon level while optimizing computational resources for greater

efficiency and effectiveness. It is particularly well-suited for species with highly complex

gene structures 19.

Limitations of Traditional Methods

Although great progress has been made in gene sequence and structure analysis methods in

methodological research in recent years, there are still many limitations. A major challenge is

the strong reliance on annotation data. The reliance on annotation data for analysis may lead

to analytical bias, which will limitation restricts the discovery of novel genes and their

respective functions. Furthermore, the expandability of numerous conventional approaches is

frequently constrained by the intrinsic complexity of their algorithms, making it difficult to

extend the analysis to multiple species or large populations, and there are difficulties in

computational efficiency, especially when applied to large-scale genomic data sets. As

genomic data and protein structure analysis continues to grow exponentially, the need for

more efficient, scalable, and automated methods becomes increasingly important, and with

the improvement of old analysis methods and the emergence of new methods, people's



understanding of genomics and its applications in medicine, protein structure, disease

prediction and biotechnology will surely be further improved 20–22.

High Dependence on Annotated Data

In 2003, scientists collaboratively initiated the Encyclopedia of DNA Elements (ENCODE)

project to explore and decode a vast array of functional elements within the human genome 23.

By leveraging bioinformatics techniques, genome annotation involves identifying a wide

range of functional elements, including coding genes, non-coding RNAs, repetitive sequences

like transposons, and regulatory elements 24.

In early genome annotation methods, traditional approaches often use hybridization-based

techniques 25,26 or experimental methods 27,28, which significantly rely on human knowledge

and expertise. Different bioinformatics software tools including Blast2GO, InterProScan and

GeneMark, has been applied for gene annotation 29–31. However, these methods and

software offer only limited contributions, lacking the capacity to effectively process

high-throughput data. This presents a major challenge in bioinformatics, particularly in the

analysis of large-scale omics data.

Reliance on annotation data is a key limitation of gene sequence and structure analysis.

High-quality annotation is essential for accurate functional predictions and evolutionary

inferences. However, the availability and completeness of such annotations can vary greatly

between species, leading to inconsistent data interpretation. Many genome databases remain

poorly annotated, especially for non-model organisms, and this deficiency can hinder research

efforts. In addition, the manual annotation process is labor-intensive and prone to human error,

resulting in inaccurate predictions of gene function. This dependence on curated data

underscores the need for automated annotation tools and methodologies to enhance the

efficiency and accuracy of genome analysis, particularly as sequencing data continues to

expand at an unprecedented rate.

Low Computational Efficiency and Difficulty in Scaling to Multi-Species Genomes



Most existing computational tools necessitate an understanding of the optimal evolutionary

distance for selection, along with the development of new algorithms for alignment,

conservation analysis, and result visualization. Traditional alignment and analysis methods

often require a lot of computing resources and time and therefore are not suitable for

large-scale studies involving multiple species. Limited computational efficiency remains a

major challenge in gene sequence and structure analysis, hindering the processing of

large-scale genomic data, especially when dealing with large genomic datasets 32.

Historically, the main limitation in genomic analysis was the sequencing process itself, that

was significantly more costly than computational analysis. However, as computational

analyses continue to advance, there is a growing need to enhance sequencing throughput

while reducing costs, leading to the generation of even larger volumes of genomic data, as a

result, computational cost and efficiency have become increasingly critical in the analysis of

33. The complexity of analyzing algorithms hindered the ability to analyze and interpret

genomic information in a timely manner.

To comprehend the complexities of genome organization, gene function, and the genetic

mechanisms underlying diseases, there is an urgent need to develop more efficient algorithms

and computational frameworks. As the field shifts toward more comprehensive analyses,

including multi-species comparisons, these tools must be capable of managing the scale and

intricacy of modern genomic data. The rapid growth of genomic data presents major

challenges in terms of computational resources and analysis methods. Traditional techniques

need to be improved to handle the huge amounts of data required for detailed comparative

studies. High-Performance Computing (HPC) has become a key solution to these issues, with

Graphics Processing Units (GPUs) playing a central role. Their ability to process many tasks

simultaneously helps to significantly speed up time-consuming computational processes.

Furthermore, the advent of machine learning and high-performance computing may provide

promising solutions to these challenges, allowing researchers to more effectively explore the

vast potential of genomic data 33.



Progress in Gene Prediction Models Based on Deep Learning

Protein and Gene Language Models

Today, Artificial Intelligence (AI) systems primarily depend on machine learning and deep

learning. Machine learning enables systems to learn from data, automating the creation of

analytical models and solving complex tasks with minimal human input. Deep learning, a

subset of machine learning based on artificial neural networks, has demonstrated outstanding

performance across various applications, often surpassing traditional machine learning

models and conventional data analysis techniques.

In gene prediction, deep learning has been particularly transformative, driving advancements

in protein and genomic language models that leverage vast biological datasets to uncover

intricate relationships between sequences and their functions. The combination of deep

learning and modern DNA/RNA sequencing technologies has transformed the field of

bioinformatics, opening new frontiers in genomics research and accelerating the translation of

massive biological data into actionable insights. As these AI-driven approaches continue to

evolve, they promise to unlock deeper insights into gene regulation, protein interactions, and

the fundamental mechanisms underlying life at a molecular level.

Over the past few years, machine learning has led to significant advancements in the efficient analysis

of preprocessing techniques. The development of artificial neural networks (ANNs) has driven the

evolution of deep neural network architectures, enhancing learning capabilities and giving rise to what

we now refer to as deep learning 35.

We have illustrated the classification of machine learning algorithms applied in nucleic acid

structure prediction, emphasizing the transition from traditional machine learning methods to

deep neural learning techniques (Figure 2). It is structured into three main levels: general

machine learning algorithms, artificial neural networks (ANNs), and deep neural learning

models, showcasing their hierarchical relationships and increasing complexity. Within this

framework, deep learning emerges as the most sophisticated approach, utilizing deep neural

networks to process genomic sequences with higher accuracy. The advanced models such as



RNA-FM and ProteinRNA-FM enhanced DNA and RNA structure prediction through deeper

pattern recognition and improved accuracy. These progressive advancements, from traditional

machine learning models to sophisticated deep neural networks, demonstrate the growing role

of artificial intelligence in DNA and RNA structure prediction. These advancements provide a

powerful toolkit for genomic research, molecular biology, and bioinformatics applications,

enabling more precise and efficient structural analysis.

Since the emergence of deep learning methods, the landscape of gene prediction has been

greatly changed. These models leverage vast biological data to unravel the intricate

relationships between sequences and their biological functions, successfully predicting the

structures of nucleic acids and proteins 31 33 34.

Here we provided a brief list of tools and algorithms for variant calling and annotation, along

with links to their source code in TABLE 2. (modified from 36) to aid in choosing the most

appropriate deep learning tool for a specific data type. This table offers a summary of

different deep learning models used in omics research, highlighting their specific architecture,

target datasets, and predictive purposes. It includes models such as RNNs, CNNs, LSTMs,

GANs, and AE-based frameworks, demonstrating their application in miRNA target

prediction, gene expression analysis, histone modification classification, variant calling, and

epigenetic variation detection.

Traditional methods and deep learning-based approaches offer distinct advantages and

challenges when applied to various fields. Traditional methods, often based on predefined

rules and handcrafted features, typically provide interpretable results but may struggle with

complex patterns and large datasets. In contrast, deep learning methods excel at capturing

intricate patterns and handling vast amounts of data through automatic feature extraction.

When comparing these approaches using quantitative metrics, deep learning typically delivers

superior accuracy by effectively capturing complex, non-linear relationships. However, this

improved accuracy can come at the cost of computational efficiency, as deep learning models

usually require significant processing power and longer training times. Traditional methods,



on the other hand, tend to be more computationally efficient and require fewer resources,

making them suitable for applications where real-time processing is crucial. Strengthening the

argument with such quantitative comparisons provides a clearer perspective on selecting the

appropriate approach based on specific requirements.

To make the comparison clearer, let's take the example of image classification. We can

contrast a traditional machine learning approach, such as a Support Vector Machine (SVM)

with handcrafted features, against a deep learning model like a Convolutional Neural Network

(CNN).

Precision: Traditional method (SVM with Histogram of Oriented Gradients features): ~85%

accuracy on a benchmark dataset (e.g., MNIST). Deep learning method (CNN with multiple

convolutional layers): ~99% accuracy on the same dataset. Analysis: Deep learning

demonstrates significantly higher accuracy, especially as the complexity of the dataset

increases.

Computational Efficiency: Training time for SVM: A few minutes on a standard CPU.

Training time for CNN: Several hours to days on a GPU, depending on the network depth and

dataset size. Inference time for SVM: A few milliseconds per image. Inference time for CNN:

A few milliseconds to seconds, depending on the model size.

Analysis: Traditional methods are more efficient in terms of computation, making them

preferable for applications with limited hardware resources. By presenting such quantitative

comparisons, it becomes evident that while deep learning models offer superior accuracy,

their computational demands can be a limiting factor, necessitating a careful choice based on

application-specific constraints.

Due to these characteristics, deep learning has become increasingly applied in the biological

analysis of DNA, RNA, and proteins. Its ability to automatically extract complex features and

identify intricate patterns from large-scale biological datasets, which makes it particularly



well-suited for tasks such as sequence classification, motif discovery, and structural prediction.

The higher accuracy of deep learning models enables more precise identification of functional

elements and interactions within biological sequences, which is crucial for advancing

genomics, transcriptomics, and proteomics research. Despite the computational challenges,

the potential to uncover novel insights and drive discoveries has made deep learning an

indispensable tool in modern biological data analysis.

For nucleic acids, there are multiple models belonging to DL model for prediction, The

TABLE 3 presents a list of deep learning methodologies in genomics. From left to right, the

columns detail the acronym of the deep learning (DL) model (if applicable), the DL model

utilized, the omics data used as input, the prediction or research objective, and the

corresponding evaluation metrics (modified from 37).

Other BERT based models like DNABERT 38, CDSBERT 39 and ProtBERT (adapted for

nucleotide prediction by retraining on DNA/RNA sequences) 40. Thess models encompasses

both local and global representations, enabling end-to-end processing of these inputs and

outputs, and allowing the prediction of their functions based on learned contextual

relationships.

This approach allows researchers to decode complex patterns within genomic data,

facilitating the identification of potential pathogenic genes and their roles in diseases.

Furthermore, the integration of these models Like DNABERT-2 41, a pre-trained BERT model

learns representations of DNA k-mers by treating sequences as a language and incorporating

both upstream and downstream nucleotide contexts, genomic studies have achieved more

accurate and efficient predictions, thereby improving our understanding of gene regulation

and expression 42. BERT-based models are proving transformative in nucleotide prediction,

enabling breakthroughs in genomics, regulatory analysis, and functional annotation.

Here are brief definitions and contexts for some advanced deep learning models used in

bioinformatics and genomics:



CDSBERT (Coding DNA Sequence BERT): A transformer-based model specifically

pre-trained on coding DNA sequences to understand sequence patterns, codon usage, and

functional elements. It is developed to enhance tasks like gene prediction, variant effect

analysis, and gene function annotation. DNABERT (DNA Bidirectional Encoder

Representations from Transformers): A model of BERT-based, which pre-trained on genomic

sequences using k-mers tokenization, which allows it to capture DNA sequence context more

effectively than traditional one-hot encoding. DNABERT is widely used for tasks such as

promoter identification, mutation classification, and sequence alignment. ProtBERT (Protein

BERT): A transformer model trained in protein sequences, capturing amino acid-level

dependencies to enhance protein function prediction, structure classification, and evolutionary

analysis. RNA-BERT: A specialized BERT model pre-trained on RNA sequences, focusing on

secondary structure and regulatory elements crucial for understanding post-transcriptional

modifications and RNA-protein interactions.

A key challenge in applying deep learning to biological analysis is the quality and scarcity of

available data. Biological data, including DNA, RNA, and protein sequences, often suffer

from noise, missing values, and inconsistencies due to limitations in experimental techniques

and variability in sample conditions. Moreover, acquiring high-quality labeled biological data

can be both costly and time-intensive to obtain, often requiring expert curation and validation.

Considering the complexity of biological systems, the available datasets are often relatively

small, leading to challenges such as overfitting and limited generalizability on conventional

machine learning models.

To address these challenges, deep learning models, particularly protein and gene language

models, have become powerful tools. Inspired by techniques of natural language processing,

these models treat biological sequences as "languages," capturing intricate dependencies and

patterns within genomic and proteomic data. Trained on large volumes of unlabeled biological

sequences, these models can effectively learn meaningful representations and be fine-tuned

for specific tasks, such as protein structure prediction, gene function annotation, and variant



effect analysis. Additionally, techniques like transfer learning and data augmentation enable

these models to generalize better even with limited labeled datasets, offering significant

advantages in extracting biological insights. Despite their potential, careful model validation

and integration with experimental data remain essential to ensure the reliability and

interpretability of deep learning-driven biological discoveries.

Applicability of the BERTArchitecture in Gene Language Modeling

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based

model for contextualized language representation, which has achieved performance

surpassing human-level accuracy in many natural language processing (NLP) tasks. It

introduces a pre-training and fine-tuning approach, where the model first learns a general

understanding from vast amounts of unlabeled data and then leverages task-specific data to

address a wide range of applications with minimal changes to its architecture 43.

In 2017, A. Vaswani introduced BERT architecture, which is based on a multilayer

bidirectional transformer 44. This architecture trained two versions of the neural network: a

standard version with 12 layers and 768 dimensions (containing 110 million parameters in

total) and a larger version with 24 layers and 1024 dimensions (containing 340 million

parameters). BERT uses text embeddings to represent an input sequence, where a sequence is

defined as an arbitrary set of contiguous text tokens.

Developed by Google and released in 2018, BERT is designed to understand the context and

nuances of human language in ways never seen before 45. By utilizing a bidirectional

approach, BERT can understand the nuances of biological sequences, such as the

dependencies between nucleotides or amino acids, which are crucial for accurate gene

prediction. One of the standout features of BERT is its pretraining process. It is trained on a

vast corpus of text from the internet, enabling it to absorb an extensive amount of knowledge.

This pre-trained model can then be fine-tuned for a wide range of natural language

understanding tasks, such as text classification, question answering, and language translation

46. Belong to Large Language Models (LLMs), this architecture empowers the model to



revolutionize the field by tackling challenges related to large, complex biological datasets,

enabling it to make informed predictions about gene functions and interactions 47. As a result,

BERT-based models together with other language models, have become a cornerstone in the

field of computational biology, driving advancements in gene prediction and protein

prediction methodologies.

Development and Application of ProtBERT, CDSBERT, and DNABERT

DNABERT, CDSBERT, and ProtBERT represent significant advancements in the application

of deep learning to biological sequences.

DNABERT, on the other hand, is tailored for DNA sequences, allowing for the analysis of

genomic data with unprecedented accuracy. When compared to the most used genome-wide

regulatory element prediction programs, DNABERT has shown superior ease of use, accuracy,

and efficiency. Experimental results demonstrate that a single pre-trained Transformer model

can simultaneously achieve state-of-the-art performance in predicting promoters, splice sites,

and transcription factor binding sites. Furthermore, DNABERT can directly visualize

nucleotide-level importance and semantic relationships within the input sequence, enabling

improved interpretation and accurate identification of conserved sequence motifs and

functional genetic variations. DNABERT is not only applied to humans, but also to many

other organisms through fine-tuning and has excellent performance 38,48.

CDSBERT focuses on coding sequences, enhancing the prediction of gene functions by

integrating coding sequence data into its training process. CDSBERT variants created a highly

biochemically relevant latent space, surpassing their amino acid-based counterparts in

predicting enzyme commission numbers. Further analysis showed that synonymous codon

token embeddings shifted noticeably in the embedding space, highlighting the distinct

information added across a broad phylogeny within these traditionally considered "silent"

mutations 39.

ProteinBERT is specifically designed for protein sequences, employing a transformer



architecture to capture the contextual information of amino acids. ProteinBERT, a deep

language model tailored for proteins, integrates language modeling with the novel task of

Gene Ontology (GO) annotation prediction. Its architecture incorporates both local and global

representations, enabling end-to-end processing of these inputs and outputs. ProteinBERT

achieves multiple benchmarks across a range of protein properties, including protein structure,

post-translational modifications, and biophysical characteristics 40. AggBERT achieved

state-of-the-art performance, highlighting the potential of large language models to enhance

the accuracy and speed of Amyloid Fibril prediction, surpassing traditional heuristics and

structure-based methods 49. Overall, based on ProteinBERT, it offers an efficient framework

for quickly training protein predictors, even when there is limited labeled data available.

These models have been successfully applied to various genomic tasks, including predicting

gene functions and identifying regulatory elements, showcasing their versatility and

robustness in handling diverse biological data. The development of these models marks a

pivotal step towards automating and improving the accuracy of gene prediction, thereby

accelerating research in genomics and molecular biology.

Integration of Diverse Features

Comprehensive analysis of sequence, structure and function information

Multi-view data often offers unprecedented opportunities to gain insights into complex

biological systems from multiple perspectives and levels. However, it presents a significant

challenge for data experts and scientists to effectively optimize these datasets for specific

needs. Integration, which means combining various features, including sequence, structure,

and function information, is essential to enhance the performance of gene prediction models

that integrate sequence information, transcription factor binding, histone modifications,

chromatin accessibility, and 3D genome data, providing a comprehensive framework for more

efficient subsequent analysis 50.

In early integration methods, features from various data sources are merged into a unified

feature vector. In contrast, late integration involves training separate models for each data



view and then combining their outputs to make the final decision 51. By integrating different

types of data, researchers can develop more comprehensive models that account for the

multifaceted nature of gene regulation and expression. Integrating structural data enables

models to account for the three-dimensional conformation of proteins, which is crucial for

comprehending their functions 52. In addition, incorporating functional annotations and

evolutionary data can further refine predictions, allowing the model to leverage historical

biological information to improve accuracy. This comprehensive approach not only boosts the

model's predictive accuracy but also provides a deeper insight into the biological significance

of the predicted genes.

Models Combining RNA Secondary and Tertiary Structure Information

RNA structure plays a crucial role in various processes, including ligand sensing, as well as

the regulation of translation, polyadenylation, and splicing. The mRNA structures of genes

involved in cellular functions and stress responses often possess features that enable these

RNAs to undergo conformational changes in response to environmental factors 53. RNA

structure is pivotal in the post-transcriptional regulation of gene expression, influencing

processes such as RNA maturation, degradation, and translation. With the advent of

next-generation sequencing, RNA structure research has evolved from in vitro low-throughput

probing methods to in vivo high-throughput RNA structure profiling. The advancement of

these techniques facilitates ongoing studies into the functional roles of RNA structure 54.

Moreover, in recent years more advancements have also focused on models that incorporate

RNA secondary and tertiary structure information, such as RNA-FM 55, PlantRNA-FM 56,57,

and PINC 58. These models use structural data to improve predictions of RNA function and

interactions, acknowledging that the spatial configuration of RNA molecules is essential for

their biological functions. By combining secondary structural features with sequence data,

more accurate predictions of RNA behavior can be made. This integration is particularly

important given the complexity of RNA structures, which often involve intricate folding

patterns that are essential for their functionality. As such, the development of models that

incorporate both sequence and structural information represents a pivotal advancement in



RNA biology 55.

Different Basement Combining RNA Secondary and Tertiary Structure Information

In order to gain a deeper understanding of the structure of RNAs, the RNA-FM and

PlantRNA-FM were performed based on Bert and Transformer, respectively. The original

Transformer model can be traced back to 2017 59. The core innovation of the Transformer

model lies in its introduction of self-attention mechanisms. A key challenge in RNA

secondary structure prediction is accurately identifying interactions between nucleotides that

form stem-loop structures. Transformers address this challenge by enabling each nucleotide to

attend to every other nucleotide in the sequence, and this capability makes the Transformer

particularly well-suited for modeling such interactions. This is mathematically defined as:

In RNA sequence prediction, Q, K, and V represent query, key, and value vectors from

nucleotide embeddings, identifying nucleotides of interest, interaction partners, and encoded

information, respectively. The SoftMax function ensures attention scores sum to 1, enabling

predictions of base-pairing probabilities and structural motifs like stems, bulges, and loops. A

practical enhancement incorporates sequence-specific constraints into the attention

mechanism by modifying the score calculation using a constraint matrix C, which prioritizes

biologically plausible interactions.

To enhance the model's ability to capture diverse data patterns, Transformers employ

multi-head attention, which computes multiple attention functions in parallel and combines

their outputs:

where each head is calculated as:

The Transformer model uses positional encoding to embed token position information into the
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sequence. This encoding is added to the input embeddings and computed as follows:

BERT (Bidirectional Encoder Representations from Transformers) is based on Transformer

proposed by Google in 2018， the emergence of BERT marks an important milestone in

pre-trained

language models 60. BERT addresses this limitation with a bidirectional encoder, enabling it to

capture both upstream and downstream dependencies simultaneously. This is accomplished

through Masked Language Modeling (MLM), a pretraining task in which random input

tokens are masked, and the model learns to predict them based on the surrounding context:

M represents the set of masked tokens in the input sequence x, and p(xi|x/M) denotes

probability of predicting the original token xi given the masked input. In addition to MLM,

BERT also incorporates a Next Sentence Prediction (NSP) task, which further strengthens its

ability to understand sentence relationships. In this task, the model is provided with two

sentences and must determine whether the second sentence logically follows the first. The

loss function for NSP is defined as:

Where y is a binary label indicating whether the second sentence is the next sentence or a

randomly sampled one, and P (IsNext) and P (NotNext) are the model’s predicted

probabilities.

Comparation and limitations Transformer and BERT

The Transformer and BERT are pivotal architectures in natural language processing, differing

in design and applications. Transformers, a general architecture based on attention

mechanisms, capture global dependencies in data through self-attention and multi-head

attention mechanisms. They are composed of an encoder that processes input sequences and a
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decoder responsible for generating the output. BERT (Bidirectional Encoder Representations

from Transformers) is a pre-trained language model based on the Transformer encoder. Its key

innovation is bidirectional encoding, enabling it to consider contextual information from both

directions during training, excelling in sentence structure and semantic understanding

(TABLE 4. indicate the difference). In terms of application scenarios Transformer, due to its

flexible architecture, BERT is widely used for tasks like machine translation and text

generation, whereas BERT is primarily applied in natural language understanding tasks such

as text classification and named entity recognition. Large Language Models (LLMs) have

revolutionized natural language processing (NLP), setting new benchmarks across a wide

range of tasks. Transformer-based models like BERT and GPT employ pooling layers to

combine token-level embeddings into more comprehensive sentence-level representations,

which are essential to their overall performance 61. Missing data is a common challenge in

wireless networks and many other fields, often limiting the effectiveness of machine learning

and deep learning models. FGATT tackles this problem by combining the Fuzzy Graph

Attention Network (FGAT) with the Transformer encoder, offering a strong and accurate

solution for data imputation 62.

In RNA structure prediction, the difference between Transformer and BERT lies in their

handling of long-range dependencies and contextual understanding. Transformers excel at

capturing distant nucleotide interactions, such as base pairing, by employing self-attention,

which allows each token to focus on all other tokens simultaneously. BERT’s bidirectional

encoding makes BERT particularly effective for tasks such as predicting RNA-binding sites

and analyzing mutation effects on RNA structures, making it well-suited for RNA sequence

inference tasks.

In summary, Transformers are celebrated for their flexibility and strong generative

capabilities, while BERT stands out in natural language understanding tasks. Their

complementary strengths open new possibilities and drive innovations in natural language

processing 63, Self-GenomeNet. In different cases of analyzing, the basement model should be

selected flexibly.



TABLE 4. compares Transformer and BERT architectures, highlighting their differences in

structure and application. Transformers use an encoder-decoder design for generative tasks

like translation, while BERT is encoder-only, excelling in text understanding. Both employ

self-attention; however, BERT employs masked language modeling (MLM) and next sentence

prediction (NSP) during pretraining. These distinctions make Transformers better for

sequence generation and BERT for contextual language comprehension.

Significant Improvements for Model Performance in application

Deep learning has made incredible progress in recent years. It works by combining many

complex functions to understand the relationships between input data and results. Although

neural networks have been around for a long time, recent improvements have greatly boosted

their performance in areas like computer vision and natural language processing. The

optimization of deep learning models has also led to better accuracy, greater ability to apply

to different situations, and faster processing.

For example, Deep Dual Enhancer is a method based on DNABert that uses a combination of

multi-scale convolutional neural networks and BiLSTM to identify enhancers. The

optimization of DNABERT-2 has resulted in enhanced performance metrics, including

accuracy and speed, allowing for more efficient processing of large genomic datasets 65.

These improvements are critical for practical applications. The ability to quickly and

accurately predict gene function will have a profound impact on fields such as personalized

medicine and genetic engineering. In addition, advances in computational efficiency allow

researchers to analyze larger data sets, facilitating the exploration of complex biological

problems that were previously unattainable. As deep learning continues to develop and be

applied, there is still great potential to further improve model performance.

In summary, the combination of deep learning techniques and genetic prediction models has

revolutionized the field, offering new insights and capabilities that deepen our understanding

of genetic information and its role in health and disease. As these models continue to be



developed and applied, they will continue to shape the future of genomic research.

Innovations in Datasets and Modeling Techniques

Data Preprocessing

Data preprocessing is an essential step when analyzing genomic and transcriptomic data

because it directly affects the quality and accuracy of the results. In genomic research,

preparing the data is especially important when using machine learning methods for genomic

selection. This process involves cleaning the raw data, adjusting it to a consistent scale, and

transforming it to make sure it's ready for analysis. For example, data preprocessing for

next-generation bisulfite sequencing involves data cleaning, normalization, and addressing

batch effects. Additionally, reduced representation bisulfite sequencing requires special

handling to account for adapter contamination and artificial bases incorporated into sequence

reads 66. While in transcriptomic research such as RNA-Seq, data preprocessing methods can

be applied to minimize systematic variations and harmonize the datasets before they are used

to build a machine learning model for tissue-of-origin classification 67.

Data preprocessing can include the removal of low-quality reads, trimming of adapter

sequences, and normalization of expression levels. Advanced preprocessing techniques, such

as through the application of machine learning and deep learning techniques, can further

enhance data quality by identifying and correcting systematic biases in the data 37,68.

For example, the implementation of tools like LongQC provides automated quality control for

long-read sequencing data, ensuring that the datasets used for analysis are of high quality and

accurately represent the underlying biological phenomena quality control tool for genomic

datasets produced by third-generation sequencing (TGS) technologies, such as Oxford

Nanopore Technologies (ONT) and SMRT sequencing from Pacific Biosciences (PacBio) 69.

Additionally, the integration of multiple sequencing technologies, such as combining

short-read and long-read sequencing, can improve the comprehensiveness of genomic datasets,

allowing for more accurate variant calling and functional annotations. TABLE 4. indicates a

list of deep learning methods in transcriptomics.



Annotation and Organization of Genomic and Transcriptomic Data

An organism's genome impacts nearly every facet of human biology, from molecular and

cellular functions to health and disease phenotypes. Investigating DNA sequence variations

between individuals (genomic variation) can uncover previously unknown biological

mechanisms, identify genetic factors contributing to disease susceptibility, and aid in the

development of new diagnostic tools and therapies 70. The annotation and organization of

genomic and transcriptomic data are essential for comprehending the functional implications

of genetic variation. Accurate annotation involves linking genomic sequences to their

corresponding biological functions through various computational tools and databases.

For example, the use of Human Phenotype Ontology (HPO) enables researchers to

standardize clinical features and predict causative genes from phenotypic data; the

interpretation of genomic variants from whole exome sequencing (WES) can be improved by

using Human Phenotype Ontology (HPO) terms, which help standardize clinical features and

predict causative genes 71. Furthermore, tools like Phen2Gene leverage a database based on

this information, known as the HPO2Gene Knowledgebase (H2GKB). This resource provides

weighted and ranked gene lists for each HPO term, aiding in the identification of potential

pathogenic variants in genomic studies 72. The integration of these annotation tools with

machine learning approaches enhances the ability to predict phenotypic outcomes from

genomic data, thereby enhancing the understanding of genotype-phenotype relationships. The

empirical Bayes prior, which is expected to align with the observed epistasis pattern, is used

to reconstruct the genotype–phenotype mapping through Gaussian process regression 73,74.

Data Compression Techniques

(e.g., Byte Pair Encoding as a Replacement for k-mer Markers)

Large biological datasets are being generated at an accelerating rate, posing significant

storage challenges, especially in the field of high-throughput sequencing (HTS) 75. Data

compression technology is crucial for managing the vast amounts of genomic data generated

by high-throughput sequencing technologies. Efficient compression not only reduces storage



requirements but also enhances data transmission speed, which is crucial for large-scale

genome research.

One approach to storing and indexing datasets is by using sets of k-length substrings, known

as k-mers 76. BPE can effectively compress genomic sequences by identifying and replacing

frequently occurring pairs of bytes with shorter representations, thereby reducing the overall

size of the dataset without losing critical information by 77. RBFQC outperforms other

state-of-the-art genome compression methods. When compared to GZIP, RBFQC achieves a

compression ratio of 80-140% for fixed-length datasets and 80-125% for variable-length

datasets. In comparison to domain-specific FastQ file referential genome compression

techniques, RBFQC offers a 10-25% improvement in both compression and decompression

speeds 78.

All the methods have been used to outperform conventional compression techniques,

achieving significant reductions in file size while maintaining the integrity of the genomic

data. Such advancements in data compression are essential for facilitating the analysis and

sharing of genomic information across research platforms.

Model Optimization

Model optimization is a key aspect of enhancing the predictive power of genomic and

transcriptomic analyses. Various strategies can be employed to optimize models, including

hyperparameter tuning, feature selection, and the integration of ensemble methods.

Hyperparameter tuning is a critical step in finding the optimal machine learning parameters.

Identifying the best hyperparameters can be time-consuming, especially when the objective

functions are expensive to compute or when many parameters need to be adjusted 79.

Bayesian optimization is a technique used to optimize objective functions that are

time-consuming to evaluate, often requiring minutes or hours. It is particularly well-suited for

optimizing continuous domains with fewer than 20 dimensions and can handle stochastic

noise in function evaluations. The method constructs a surrogate model for the objective and



quantifies the uncertainty of this model using a Bayesian machine learning technique called

Gaussian process regression. An acquisition function, derived from this surrogate, is then used

to determine the next step 80. As an alternative to convolutional neural networks (CNNs),

vision transformers (ViT) offer strong representational power through spatial self-attention

and channel-level feed-forward networks. The ability to model relationships across spatial and

channel dimensions sets ViT apart from other networks. To enhance this capability, we

introduce Feature Self-Relation (SERE) for training self-supervised ViT models, resulting in

stronger representations that consistently improve performance on a range of downstream

tasks 81. Additionally, the incorporation of epistatic interactions in models, such as Epistatic

Random Regression BLUP (ERRBLUP), which accounts for all pairwise SNP interactions,

and selective Epistatic Random Regression BLUP (sERRBLUP), which focuses on a selected

subset of pairwise SNP complex interactions, further enhances the model’s capability 82.

GBLUP, ERRBLUP, and sERRBLUP are applied using genotypes from a publicly available

wheat dataset along with their respective simulated phenotypes. These optimization

techniques play a crucial role in developing robust models that can accurately forecast

phenotypes based on genomic data 83.

Application of Self-Supervised Learning Methods

Self-supervised learning methods have become a powerful tool for extracting meaningful

insights from genomic data, all without requiring large, labeled datasets. By leveraging the

inherent structure of the data, self-supervised learning (SSL) can enhance the performance of

predictive models, particularly when labeled data is limited. SSL has become a powerful

technique for extracting meaningful representations from vast, unlabeled datasets, driving

advancements in computer vision and natural language processing. It holds great potential for

applications in single-cell genomics (SCG), enabling fully connected networks and

benchmarking their utility across key representation learning scenarios 84.

By leveraging unlabeled data, self-supervised learning techniques can enhance the

performance of machine learning models, especially when labeled data is limited.

Self-GenomeNet, a self-supervised learning method specifically designed for genomic data, is



ideal for large-scale, unlabeled genomic datasets and has the potential to significantly

improve the performance of genomic models. Self-GenomeNet utilizes reverse-complement

sequences to learn dependencies and improve prediction accuracy in data-scarce genomic

tasks for improvement. This approach not only improves the efficiency of model training but

also aids in the discovery of novel genetic associations and biomarkers, ultimately advancing

our understanding of complex biological processes. This new approach not only enhances the

efficiency of training models but also facilitates the discovery of novel genetic associations

and biomarkers, ultimately enhancing our comprehension of intricate biological processes 85.

Optimized Model Architectures for Long Sequence Processing

(e.g., Attention with Linear Biases)

The development of optimized model architectures for processing long sequences is essential

for advancing genomic and transcriptomic analyses. For instance, machine learning is widely

used in genomics to identify patterns in data and generate new biological hypotheses 86.

Traditional models often struggle with the inherent challenges posed by long sequences, such

as increased computational complexity and memory requirements.

Since Vaswani introduced the transformer model 44, It was initially demonstrated that

extrapolation could be achieved by simply altering the position representation method.

However, the current methods still do not support efficient extrapolation. A simpler and more

efficient approach called Attention with Linear Biases (ALiBi) was introduced. This method

biases the query-key attention scores by applying a penalty proportional to their distance.

ALiBi's inductive bias favoring recency allows it to outperform several powerful positional

methods on the WikiText-103 benchmark. These methods were specifically designed to tackle

challenges by enhancing the efficiency of attention mechanisms in deep learning models 87.

This architecture allows for the effective processing of long genomic sequences while

maintaining high predictive accuracy.

In conclusion, by optimizing model architectures in this way, researchers can enhance their

ability to analyze complex genomic data and extract meaningful biological insights with



improved efficiency.

Cross-Species Genomic Analysis

Cross-species genomic analysis is an effective method for understanding evolutionary

relationships and functional conservation across different organisms. By combining genomic

data from multiple species with comparative genomics techniques, researchers can identify

conserved genetic elements and pathways that play crucial roles in various biological

processes 88.

Recent studies have demonstrated the effectiveness of multi-species genomic modeling in

predicting phenotypic outcomes, as seen in the analysis of hesperidia infection risk across

diverse bird populations 89. Additionally, the use of genomic data from model organisms to

inform studies in non-model species facilitates the transfer of knowledge and enhances the

understanding of complex traits and diseases 90. This inter-species approach not only broadens

the scope of genomic research but also contributes to the conservation of biodiversity and the

study of evolutionary dynamics.

Applications of Gene Structure Prediction: Case Studies

Annotation of Functional Regions

Gene structure prediction is essential for understanding the functional elements within the

genomes of different organisms. Identifying and annotating functional regions, such as

promoters, enhancers, and other regulatory elements, is crucial for unraveling gene function

and regulation.

Based on the BERT-based model, DNABERT-2 employs deep learning techniques to analyze

DNA sequences, allowing for precise identification of functional regions like promoters and

enhancers in human genes, BERT-TFBS is an innovative BERT-based model designed for

predicting transcription factor binding sites through transfer learning. The model integrates a

pre-trained BERT module (DNABERT-2) 91. The model consists of a convolutional neural

network (CNN) module, a convolutional block attention module (CBAM), and an output



module. The BERT-TFBS model leverages the pre-trained DNABERT-2 module to capture

complex long-term dependencies in DNA sequences through a transfer learning approach,

while the CNN module and CBAM work together to extract high-level local features 92.

Large language models, commonly used in natural language processing like Google's BERT

and OpenAI's GPT-X, have primarily been applied in fields such as genomics, transcriptomics,

proteomics, drug discovery, and single-cell analysis 46.

Animals and humans: Using RNA-FM to Predict Functional Regions in Mammals

Predicting RNA secondary structure presents a major challenge for RNA structural biologists,

necessitating dedicated efforts to refine our understanding of RNA folding principles and

improve the accuracy of structure prediction models. These models have significant potential

to advance downstream applications, such as the development of RNA-targeting drugs 93. In

the realm of animal studies, RNA-FM and RNA-MSM and related tools have become

powerful methods for predicting functional regions within mammalian RNA sequences.

The pre-trained model can be further refined for a variety of downstream tasks related to RNA

structure and function. The method leverages the structural properties of RNA to identify

regions that are RNA 2D/3D structure prediction. RNA-FM uses self-supervised learning to

predict secondary and 3D structures by leveraging the extensive dataset of non-coding RNA

sequences. This approach enables RNA-FM to capture a wide range of structural information,

offering a comprehensive understanding of RNA sequence features. In contrast, RNA-MSM

utilizes homologous sequences obtained from RNAcmap through an automated pipeline. This

model excels at accurately mapping to 2D base pairing probabilities and 1D solvent

accessibility 46.

By analyzing the RNA secondary structures, RNA-FM uses self-supervised learning to

predict secondary and 3D structures by leveraging the extensive dataset of non-coding RNA

sequences. This approach enables RNA-FM to capture a wide range of structural information,

offering a comprehensive understanding of RNA sequence features. In contrast, RNA-MSM



utilizes homologous sequences obtained from RNAcmap through an automated pipeline. This

model excels at accurately mapping to 2D base pairing probabilities and 1D solvent

accessibility, predicting RNA splicing in the SARS-CoV-2 genome structure and evolution,

modeling protein-RNA binding preferences, and modeling gene expression regulation.

RNA-FM can predict how these structures influence protein binding sites, thereby enhancing

our understanding of post-transcriptional regulation in mammals 55.

Furthermore, the study of CodonBERT defined a BERT-based architecture for codon

optimization using the cross-attention mechanism, presenting a model specifically developed

for codon optimization, an essential component in the design of mRNA vaccines. This

research highlights the potential of BERT-based architectures in optimizing codon sequences

to enhance protein expression, which is directly relevant to vaccine development. While these

studies do not directly apply RNA-BERT to vaccine design, they demonstrate the adaptability

of BERT-based models in RNA sequence analysis, suggesting potential applications in RNA

vaccine development 94.

This predictive capability is particularly valuable for studying complex gene regulatory

networks and understanding how alterations in RNA structure can impact gene expression and

contribute to various diseases.

Plants: Analyzing the Role of PlantRNA-FM in RNA Secondary Structures

In animals, this model is well established for RNA structure prediction. Studies conducted in

Arabidopsis thaliana have shown that specific RNA structures can influence the

transcriptional activity of genes, thus, it plays a crucial role in plant development and its

response to environmental stimuli. In plant biology, the double-stranded RNA structures

downstream of uAUGs (referred to as uAUG-ds) play a key role in the selective translation of

uAUGs, enabling the prediction and rational design of translating uAUG-ds. The widespread

use of deep learning-based RNA structural features and the conservation of RNA helicases

across different kingdoms suggest that mRNA structural 95.



Then PlantRNA-FM has been utilized to investigate the relationship between RNA secondary

structures and transcriptional regulation. It was pretrained on a vast dataset, incorporating

RNA sequences and structural data from 1,124 distinct plant species. PlantRNA-FM

demonstrates exceptional performance in plant-specific downstream tasks. This model

enables the exploration of functional RNA motifs within the complex plant transcriptomes,

providing plant scientists with the tools to program RNA codes in plants. The application of

PlantRNA-FM allows researchers to predict how RNA secondary structures can affect gene

expression and regulatory mechanisms, providing insights into plant adaptation and evolution

56.

Humans: Precise Prediction of Human Gene Functional Regions with DNABERT-2

DNABERT-2 has proven to be an asset in the precise prediction of human gene functional

regions, including promoters and enhancers. By utilizing a deep learning approach,

DNABERT-2 can analyze vast genomic datasets to identify critical regulatory elements that

govern gene expression.

Integrating DNA breathing features with the DNABERT-2 foundational model significantly

improved the accuracy of TF-binding predictions. A study by researchers at Los Alamos

National Laboratory integrated DNA breathing features with the DNABERT-2 foundational

model enhances the prediction of transcription factor binding. This approach enhanced the

accuracy of predicting gene-binding locations, offering valuable insights into mutations

associated with cancer. Since gene expression can be linked to diseases like cancer, predicting

the transcription factors that bind to specific gene locations could have significant

implications for drug development 96. Building on the Extended Peyrard-Bishop-Dauxois

(EPBD) nonlinear DNA dynamics model, the multi-modal deep learning model

EPBDxDNABERT-2 significantly enhances the prediction of over 660 TF-DNA interactions.

This improvement results in an increase of up to 9.6% in the area under the receiver operating

characteristic (AUROC) metric, compared to the baseline model. EPBDxDNABERT-2 could

enhance predictive accuracy for disease-related non-coding variants identified in

genome-wide association studies. This model integrates various genomic features and enables



researchers to uncover the complexities of gene regulation in humans, opening new avenues

for progress in personalized medicine and targeted therapies 97.

Protein-RNA Interactions by Deep Learning

Protein–RNA interactions are crucial for numerous cellular processes and studying them is

essential for understanding the molecular mechanisms of gene regulation. Recent

advancements in computational methods have improved the prediction of RNA-binding sites,

enabling the identification of protein-RNA interaction networks linked to various diseases.

Recently, AlphaFold has brought a groundbreaking transformation into the field of protein

biology. Looking ahead, the prediction of protein-RNA interactions is expected to see

significant advancements in the coming years. This includes improvements in predicting both

binding sites and binding preferences, as well as a comprehensive exploration of commonly

used datasets, features, and models. The incorporation of deep learning models has greatly

enhanced the accuracy of RNA-protein binding site predictions, enabling researchers to

pinpoint potential therapeutic targets and gain a deeper understanding of the roles specific

proteins play in RNA metabolism and gene expression regulation 98. Advancements in

protein-RNA interaction prediction have been significantly driven by deep learning

technologies, enabling a deeper understanding of RNA-binding proteins (RBPs) and their

regulatory roles across multiple species. Just as comprehensive clinical studies on ectopic

pituitary adenomas have improved the diagnosis and management of complex diseases 99,

deep learning-powered models such as RNA-FM and ProteinRNA-FM have revolutionized

RNA-protein binding site predictions, enhancing accuracy in identifying functional RNA

regions. Similarly, long-term clinical data accumulation, as shown in the 13-year study on

pediatric pituitary neuroendocrine tumors, underscores the importance of large-scale datasets

for improving model generalization 100. Deep learning models trained on multi-species

RNA-protein interaction data have demonstrated the ability to generalize across diverse

biological systems, leading to more comprehensive functional annotations and a deeper

understanding of post-transcriptional gene regulation.



Genomic Evolution and Diversity Studies

An analysis of genomic evolution and diversity is essential for understanding the evolutionary

trends among species. DNABERT has been utilized to analyze genomic sequences across

multiple species, allowing researchers to study the variations and evolutionary patterns that

exist within gene structures.

For example, research has demonstrated that genomic sequences display considerable

structural variations, offering valuable insights into the evolutionary history of various species

and multiple ecotypes 101. By employing advanced computational methods, researchers can

effectively analyze these variations, contributing to our understanding of evolutionary biology

and the mechanisms driving genomic diversity 67.

A specific case study utilizing BERTPhylo involved analyzing genomic sequences across

various species to investigate evolutionary trends. Built on the established PlantSeqs dataset,

with a focus on Embryophyta, this new software has demonstrated for the first time that

phylogenetic trees can be constructed by automatically selecting the most informative regions

of sequences, eliminating the need for manual selection of molecular markers. This finding

provides a solid foundation for further exploration into the functional roles of different

regions of DNA sequences, deepening our understanding of biology. This model was

employed to identify structural changes in genomic sequences, revealing patterns of

conservation and divergence that are critical for understanding the evolutionary relationships

among species. This analysis not only expands our understanding of genomic evolution but

also establishes a framework for future research focused on uncovering the genetic

foundations of adaptation and speciation 102.

In conclusion, the applications of gene structure prediction, particularly through advanced

computational models like DNABERT, RNA-FM, and its homologous BERT-derived

algorithms, have significantly deepened our insight into gene function, regulation, and

evolutionary dynamics across different organisms. These tools offer valuable insights into the

complexities of genomic architecture and its impact on health and disease, laying the



foundation for future research and therapeutic developments.

Prospects of Gene Structure Prediction in Disease Research and Treatment

Potential for Curing Human Diseases

Gene and protein structure prediction holds immense potential for revolutionizing the

treatment and understanding of human diseases. By accurately predicting gene structure,

researchers can identify disease-associated mutations and their functional implications,

paving the way for new therapeutic strategies 103,104. For example, determining the structure or

type of RNA is crucial for RNA-based therapeutics, such as mRNA vaccines, RNA

interference, and CRISPR-based therapies. Traditionally, RNA's three-dimensional (3D)

structures have been assessed through experimental methods, including nuclear magnetic

resonance, X-ray crystallography, and cryogenic electron microscopy. However, these

approaches are costly and time-consuming 55,105. As a result, computational approaches are

developed and applied work as a bridge for the gap. Advances in computational methods

enable the integration of multi-omics data, thereby deepening our understanding of complex

diseases such as cancer and neurodegenerative disorders. The ability to predict how genetic

variations affect protein function and interactions can lead to targeted therapies that are more

effective and personalized. Moreover, in recent years, deep learning approaches have

surpassed traditional prediction methods, such as transcript-wise screening and principal

component analysis-based predictions.

Complex human diseases, including cancers, cardiovascular diseases, and respiratory

disorders, pose significant public health challenges, with environmental factors playing a

crucial role in their development 106. Genomic and molecular factors related to genes, such as

genotype, mRNA expression, DNA methylation, microRNA expression, genotyping, and

next-generation whole genome sequencing, have significantly advanced the study of the

relationship between genomic factors and complex human diseases. These advancements

enable researchers to identify disease-associated factors without bias. Beyond uncovering the

molecular mechanisms behind these diseases, researchers hope that understanding these

genomic factors will aid in disease diagnosis and the development of personalized treatments



and new medicines 107.

Furthermore, as people develop a more thoroughly understanding of the genetic

underpinnings of diseases, the potential for gene therapy and genome editing technologies,

such as deep learning's impact on genomic exploration, deep learning guide CRISPR, deep

learning guide RNA and protein structures 108–110. These technologies can directly correct

genetic defects, predict the target of the drugs, significantly enhancing the identification of

potential drug candidates and offering the potential to cure previously untreatable conditions.

Early Diagnosis: Predicting Cancer-Related Mutations through RNA Secondary Structure

Early cancer diagnosis is crucial for improving patient outcomes, and gene structure

prediction can greatly improve our ability to identify cancer-related mutations. Recent studies

have indicated that RNA secondary structure plays a pivotal role in the stability and function

of RNA molecules, with mutations leading to structural abnormalities that can contribute to

diseases such as tumorigenesis. By employing computational tools to predict RNA secondary

structures, researchers can identify mutations that disrupt these structures, offering valuable

insights into the molecular mechanisms underlying cancer development. This approach not

only supports early cancer detection but also promotes the development of RNA-based

therapeutics and diagnostics, enabling a more proactive approach to managing diseases such

as neurological disorders and cancer.

Personalized Medicine:

Predicting Drug Response Based on Patient-Specific Gene Mutations

The emergence of personalized medicine has revolutionized healthcare, enabling treatments

tailored to an individual's genetic profile. In this paradigm, gene structure prediction plays a

pivotal role by facilitating the identification of patient-specific mutations that impact drug

response. By utilizing genomic language models, researchers can predict how these mutations

affect pharmacokinetics and pharmacodynamics, which will lead to more effective and safer

treatment strategies.



Building on the rapid advancements in Artificial Intelligence (AI) algorithms, recent studies

have utilized domain adaptation (DA) techniques. This personalized approach not only

enhances therapeutic efficacy but also minimizes adverse drug reactions, ultimately

improving patient adherence and outcomes. Several learning technologies have improved the

process of transferring knowledge from preclinical models to patient tumors, enabling the

prediction of drugs that are specific to tumor types. These drugs exhibit higher sensitivity in

tumors compared to normal tissue and show differential sensitivity across breast cancer

subtypes. Furthermore, these predictions could be valuable for preclinical drug testing and

phase I clinical trial design. This personalized approach not only enhances therapeutic

efficacy but also minimizes adverse drug reactions, ultimately improving patient adherence

and outcomes 111. As pharmacogenomics continues to advance, integrating gene structure

prediction into clinical practice will be crucial for optimizing personalized treatment

strategies.

Therapeutic Tools: RNA-FM for Vaccine Design and CRISPR Optimization

The development of therapeutic tools leveraging gene structure prediction is rapidly

advancing, particularly in the fields of vaccine design and gene editing.

The success of mRNA vaccines can be attributed, in part, to advancements in manufacturing

that allowed to produce billions of doses with high quality and safety standards. RNA-FM

supports the design of RNA vaccines by forecasting the secondary and tertiary structures of

RNAmolecules, which is important for eliciting robust immune responses. This methodology

has been particularly relevant in the context of rapid vaccine development for infectious

diseases, such as COVID-19.

The CRISPR system has driven increased investment and contributed to the discovery of

additional CRISPR systems. Additionally, optimizing CRISPR technology through gene

structure prediction enhances the precision of genome editing, allowing for more effective

treatments of genetic disorders. Unlike Cas9, which targets DNA, Cas13 targets RNA,

providing unique advantages for gene modulation. Built on RNA-FM, the modified



DeepFM-Crispr is a novel deep learning model developed to predict the on-target efficiency

and assess the off-target effects of Cas13d. This model leverages a large language model to

generate detailed representations enriched with evolutionary and structural data, thereby

improving predictions of RNA secondary structures and enhancing the overall efficacy of

sgRNA 112.

These advancements highlight the critical role of integrating computational predictions into

the therapeutic development process, facilitating innovative solutions for both infectious and

genetic diseases.

Multi-Species Disease Model Construction

Building multi-species disease models is crucial for understanding the evolutionary

mechanisms underlying human diseases. By predicting gene functions across different species,

researchers can gain valuable insights into conserved biological mechanisms of disease.

This comparative approach is particularly useful for studying zoonotic diseases and

understanding how pathogens evolve, adapt, and spread in various hosts. Utilizing animal and

plant models for gene function prediction enables researchers to explore the genetic basis of

diseases and develop effective interventions. Machine learning algorithms trained to predict

the regulatory activity of nucleic acid sequences have uncovered key principles of gene

regulation and guided the analysis of genetic variation. Leveraging machine learning, several

novel and powerful approaches have been developed to apply mouse regulatory models for

analyzing human genetic variants linked to molecular phenotypes and diseases. These

techniques enable the use of thousands of non-human epigenetic and transcriptional profiles,

facilitating a more effective exploration of how gene regulation influences human disease 113.

Furthermore, insights from the long-term follow-up of ectopic ACTH-secreting pituitary

adenoma emphasize the critical role of extended timeframes in understanding disease

progression 114. Similarly, in the field of multi-species disease modeling, gene prediction

models require large-scale datasets and multi-layered training to improve cross-species

applicability and stability. Just as case studies and systematic reviews on ectopic



thyrotropin-secreting pituitary adenoma provide a foundation for refining clinical insights 115,

deep learning-driven disease models benefit from diverse genomic datasets, allowing them to

capture species-specific regulatory patterns and functional elements. The integration of deep

learning with cross-species genomic data has enabled researchers to construct robust

multi-species disease models, improving the identification of conserved pathways and

species-specific genetic variations linked to complex diseases. These advances not only

deepen our knowledge of pituitary adenomas but also contribute to the development of more

accurate cross-species translational research frameworks, fostering advancements in precision

medicine and bioinformatics.

Moreover, AI-driven RNA and DNA prediction tools can help identify potential therapeutic

targets and aid in the development of cross-species treatments, spanning not only animals but

also plants, microorganisms, and humans. This ultimately strengthens our ability to address

complex diseases more effectively.

Ethical and Social Issues

The rapid development of gene structure prediction and its application in disease research will

bring great convenience and benefits but also raise major ethical and social issues 116.

Potential issues such as data privacy, informed consent, and genetic discrimination must be

addressed to ensure responsible development and implementation of these technologies.

In addition, the impact of gene editing technology, especially in terms of its accessibility and

potential for abuse, requires a sound ethical framework and regulatory oversight. Ethical

considerations often focus on Safety, Informed Consent, Justice and Equity, and Legal aspects

(specifically regarding Genome-Editing Research Involving Embryos). The principle of

genomic solidarity, with an emphasis on the public good, should serve as a framework for

clarifying CRISPR debates. The legitimate claim of genetic exceptionalism highlights the

trans-generational risks and helps bridge the knowledge gap 117.

As we address these challenges, promoting public discussion and interdisciplinary



collaboration will be critical to shaping the future of gene structure prediction in a balance

that prioritizes both ethical considerations and societal benefits.

Future Development Directions

Optimization of Models

The future of gene structure prediction hinges on the optimization of computational models

that seamlessly integrate diverse data types, including genomic, transcriptomic, and

epigenetic information, enhancing the ability to analyze unannotated data will also be crucial,

allowing for more accurate predictions and uncovering new insights into gene function and

regulation.

The significance of epigenetics, which refers to inheritance through mechanisms other than

the genomic DNA sequence, has been highlighted by its reported involvement in the

deregulation of epigenetic processes in human cancer. With the advancement of machine

learning and deep learning, which enables multimodal analysis of large omics datasets, it is

crucial to develop a platform that can perform multimodal analysis of medical big data using

artificial intelligence. This could significantly accelerate the realization of precision medicine

116. By harnessing advancements in deep learning and artificial intelligence, researchers can

create more sophisticated models that better capture the complexity of biological systems,

thereby improving the accuracy and reliability of predictions.

Large-Scale Applications

As the field progresses, the focus will shift towards the large-scale application of gene

structure prediction in various domains, including drug discovery and personalized genomics.

Developing tools that facilitate the identification of disease-associated genes and support

personalized genomic research will be paramount 118. This will involve the creation of

personal and user-friendly platforms that allow researchers and clinicians to access and utilize

predictive models effectively, this, in turn, accelerates the translation of research findings into

clinical practice. Development of tools to support personalized genomics research that will

improve healthcare, extend life expectancy, and boost the economy.



Global Collaboration Potential

The potential for global collaboration in gene structure prediction research is immense.

Cross-disciplinary partnerships among geneticists, bioinformaticians, and clinicians can drive

innovation and enhance our understanding of complex diseases. Collaborative efforts will also

facilitate the sharing of data and resources, enabling researchers to tackle pressing health

challenges on a global scale.

For example, COVID-19 vaccines were developed at an extraordinary pace, yet international

cooperation has seemingly fallen short in ensuring the global equitable distribution of

vaccines. A cooperative redistribution scheme, recently launched by WHO, CEPI, and Gavi,

aims to address issue 119. Cross-disciplinary collaboration promotes the advancement of

genomic research technology. By fostering a culture of collaboration and knowledge

exchange, the scientific community can harness the full potential of gene structure prediction

to improve health outcomes worldwide.

Conclusion

The integration of AI models into bioinformatics, especially in gene structure prediction, has

driven significant advancements, greatly improved the interpretation of biological data and

made a substantial impact on both biomedical research and bioinformatics.

Reflecting on these developments, they have not only enhanced our understanding of genomic

architecture but also provided essential insights into the molecular mechanisms behind

various diseases. The synergy between computational methods and high-throughput

sequencing technologies has enabled gene structure identification and annotation with

unprecedented accuracy and efficiency. However, it is crucial to maintain a balanced and

objective perspective when interpreting diverse research findings. While advances in

computational models, incorporating machine learning and deep learning techniques, have

greatly increased predictive capabilities, their biological validity must still be rigorously



verified through experimental methods. The mutual reinforcement of computational

predictions, empirical evidence, and experimental validation is essential for producing

reliable gene annotations that can guide clinical applications and drive new drug

development.

Looking to the future, there is a pressing need to further enhance gene structure prediction

methods by leveraging smarter and more advanced approaches. This approach combines data

from various omics fields, such as genomics, transcriptomics, proteomics, and epigenomics,

offering a more comprehensive and detailed understanding of gene function and regulatory

mechanisms. By examining these interconnected biological layers, researchers can gain a

deeper understanding of how genes are expressed, modified, and regulated in both normal

physiological conditions and disease states. Such an integrated strategy holds immense

promises for improving predictive accuracy and identifying novel therapeutic targets. Yet,

translating these predictions into clinical practice remains a significant challenge. Future

efforts must prioritize the development of standardized protocols for validating and applying

gene structure predictions in disease diagnosis and treatment, alongside robust legal and

ethical frameworks to facilitate their adoption. Collaboration among computational biologists,

clinicians, and geneticists will be pivotal in bridging the gap between research insights and

their practical application in personalized medicine.

In summary, while advancements in gene structure prediction have opened new avenues for

understanding genetic diseases and developing targeted therapies, a balanced,

interdisciplinary, and ethically grounded approach is essential to fully unlock the potential of

these innovations. By fostering collaboration, ensuring rigorous validation, and adhering to

ethical principles, we can continue to improve disease prediction and treatment strategies,

ultimately advancing precision medicine, improving patient outcomes, and delivering broader

societal benefits.

Discussion

With the booming development of biotechnology, it has brought convenience to people's lives,



and at the same time, it has brought technology to the intersection of science and ethics.

Technological development is affected by ethical values, and ethical values will affect the

development of technology 120. Although many aspects of biotechnology can be praised for

their benefits to mankind. Biotechnology also has its dark side and side effects, which may

have unexpected consequences due to improper use, causing harm to humans and society.

Therefore, there must be a sound review system to counter the ethical impact of its

development.

The broader implications of deep learning and model development in biological research

extend beyond technical advancements, touching on significant ethical concerns. One of the

critical aspects where deep learning has shown promise is in maintaining privacy and ethical

standards in clinical studies. For example, federated learning has emerged as an effective

approach for analyzing sensitive biological data while maintaining privacy and security.

Zhang et al. demonstrated the effectiveness of federated learning in predicting postoperative

remission in patients with acromegaly across multiple medical centers, all while preserving

patient confidentiality 121. This study highlights how distributed machine learning approaches

can mitigate the risks associated with centralized data storage and potential breaches, thereby

promoting ethical standards in biomedical research.

Every major advancement in technology has the potential to profoundly impact the world. As

such, the ethical evaluation of emerging technologies, including biotechnology, must evolve

in step with these advancements. Each technological breakthrough not only brings

convenience to public life but also introduces unique ethical challenges that demand flexible

responses from policymakers and legal experts based on real-world conditions. Given the

profound implications for the future trajectory of human development, these issues must be

approached with careful deliberation. Beyond safeguarding rights and freedoms, we must

exercise wisdom to anticipate and mitigate potential risks. Genetic privacy, for example, is a

major issue as genomic data contains highly sensitive information that can reveal personal

health risks and ancestral background. Ensuring the anonymity and security of such data is

crucial. Deep learning models must integrate privacy-preserving techniques, such as



differential privacy and homomorphic encryption, to effectively address these challenges.

Another crucial ethical consideration is equitable access to advanced technologies. As deep

learning models become increasingly sophisticated, there is a risk of widening the gap

between well-funded institutions and under-resourced regions. Ensuring that these

cutting-edge technologies are accessible to researchers and clinicians worldwide is essential

to avoid exacerbating existing disparities in healthcare and research capabilities. Policies and

initiatives that promote open-source model sharing and capacity-building programs can help

bridge this gap and democratize access to deep learning advancements in biology.

Furthermore, addressing biases in training datasets is critical to ensure fair and unbiased

model performance across diverse populations. Many deep learning models are trained on

datasets that may not fully represent the genetic diversity of global populations, leading to

biased predictions and potential misdiagnoses. Ethical frameworks should emphasize the

importance of inclusive data collection strategies and transparency in model development to

mitigate these biases and enhance trust in AI-driven biomedical applications. Compared to

other fields, deep learning offers unprecedented opportunities in biological research.

Addressing ethical challenges such as genetic privacy, equitable access, and dataset biases is

crucial to ensure responsible and fair implementation. Future research should prioritize the

development of ethical guidelines and regulatory frameworks to govern the use of deep

learning in genomics and healthcare, ensuring a balance between innovation and ethical

responsibility.

Additionally, the development of biotechnology is inextricably linked to finance.

Biotechnology innovation relies on significant capital investment, and its growth can, in turn,

generate employment opportunities and drive economic progress. The commercialization of

biotechnological advancements, such as novel drug development, precision medicine, and

agricultural biotechnology, requires substantial funding for research, regulatory approvals,

and market deployment. Public and private investment in biotechnology not only fosters

scientific breakthroughs but also contributes to the economic ecosystem by creating

high-skilled jobs, attracting foreign investment, and boosting industrial competitiveness.



Governments and financial institutions play a crucial role in supporting biotech startups and

research institutions through funding initiatives, tax incentives, and favorable regulatory

environments. As the biotech sector continues to expand, collaboration between academia,

industry, and financial stakeholders will be essential to sustain growth and ensure that the

benefits of biotechnological innovation are widely accessible.

In summary, the advancement of biotechnology creates a ripple effect, extending far beyond

mere technological progress to significantly influence human society. This underscores the

importance of establishing sound laws and policies to ensure that its development fosters a

positive and sustainable cycle of growth. Biotechnology not only transforms healthcare and

agriculture but also shapes economic structures, educational frameworks, and ethical norms.

Effective regulatory frameworks and strategic investments are essential to maximize its

benefits while mitigating potential risks. In the evolution of human society, no discipline

operates in isolation; progress is built on the interconnected contributions of multiple fields.

Collaboration between scientific research, financial investments, policy-making, and public

engagement is crucial to harnessing the full potential of biotechnological advancements. By

fostering a holistic and inclusive approach, society can ensure that biotechnology continues to

drive innovation while promoting ethical, social, and economic well-being on a global scale.
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Figure 1. Timeline Advancements in Gene Structure Prediction



(A) Methods for DNA Structure Prediction. This diagram illustrates the evolution of DNA structure

prediction methods over time, categorized into three primary approaches: thermodynamic, comparative

alignment, and deep learning methods. The thermodynamic method includes local and global

approaches, with key milestones such as Mfold (1990s), OligoAnalyzer (2000s), and UNAFold (2000s).

Comparative alignment methods have progressed from traditional algorithms, such as Smith-Waterman

(1980s), Needleman (1980s) and BLAST (1990s); to multiple sequence alignment (MSA)-based

approaches like MAFFT (2000s), T-Coffee (2000s) and ClustalΩ (2011). More recent advancements

incorporate machine learning-based approaches including CONTRAfold (2000s), and deep learning

models such as E2E-Fold (2020), SPOT-DNA (2020) and DNABert (2021).

(B) Methods for RNA Structure Prediction. This diagram illustrates the evolution of DNA structure

prediction methods over time, categorized into three primary approaches: thermodynamic, comparative

alignment, and deep learning methods. The thermodynamic approach includes parameter-based

methods such as Mfold (1990s), RNA Structure (1990s), and RNA FOLD (1990s), while machine

learning-based approaches have gained prominence in recent years including ContextFold (2000s).

Comparative alignment methods have evolved from traditional approaches, such as Smith-Waterman

(1980s) and Needleman (1980s), to MSA-based approaches including Foldalign (2000s), and to

machine learning-based approaches including Inferal (2000s). Recent advances in deep learning-based

techniques include RNAContext (2021), RNA-FM (2023), and SPOT-RNA (2020).



Figure 2. Diagram of AI Machine Learning and Deep Learning Concepts and Classes

This Venn diagram depicts the hierarchical relationship between machine learning algorithms, artificial

neural networks (ANNs), and deep learning techniques, particularly in the realm of RNA and DNA

structure prediction. The outermost layer represents machine learning algorithms, including tools such

as CentroidFold, CONTRAfold, and ContextFold. Within this layer, artificial neural networks (ANNs)

are highlighted as a subset, encompassing methodologies like Feedforward Neural Network (FNN),

Radial Basis Function Networks (RBFNs), and Recurrent Neural Networks (RNNs). At the core of the

diagram is deep neural learning, a specialized branch of ANNs, which includes advanced models such

as DeepBert, RNA FM, and ProteinRNA-FM. This figure emphasizes the nested structure of these

computational approaches, with deep neural learning offering the most sophisticated modeling

capabilities among the three.



TABLE 1. Comparison of MSA techniques

Technique Input Format Output Format Seq Type Method Server

CLUSTAL

OMEGA

FASTA, EMB,

GenBank

ClustalW/

Pearson/FASTA/ MSF

Protein, DNA,

RNA
Global/ Progressive

http://www.clustal.org/o mega/

https://www.ebi.ac.uk/T ools/msa/clustalo/

MUSCL
FASTA, EMB,

GenBank

Fasta, Clustalw,

MSF/html
Protein

Progressive Step1 and Step2

iterative Step 3

http://www.drive5.com/ muscle/

https://www.ebi.ac.uk/Tools/msa/muscle/

MAFFT
FASTA, EMB,

GenBank
ClustalW/ Pearson/FASTA

Protein, DNA,

RNA
Global/ Iterative

http://mafft.cbrc.jp/alignment/server/

https://www.ebi.ac.uk/Tools/msa/mafft/

KALIGN
FASTA, EMB,

GenBank

MACSIM/ ClustalW/

Pearson/FASTA

Protein, DNA,

RNA
Progressive

http://msa.sbc.su.se/cgi bin/msa.cgi

https://www.ebi.ac.uk/Tools/msa/kalign/

RETALIGN FASTA ClustalW Protein
Progressive Corner cutting

Multiple Sequence Alignment
http://phylogenycafe.elte .hu/RetAlign/

PROBCONS MFA MFA/ClustalW Protein

Probabilistic

Consistency-based Multiple

Alignment of Amino Acid

Sequences

http://probcons.stanford.Edu

TABLE 2. Deep learning-based genomic tools and algorithms for variant calling and annotation

Tools DL model Application Website Code Source

Clairvoyante CNN
To predict variant type, zygosity,

alternative allele and Indel length
https://github.com/aquaskyline/Clair voyante

DeepVariant CNN
To call genetic variants from

next generation DNA sequencing data
https://github.com/google/deepv ariant

GARFIELD-NGS DNN + MLP To classify true and false variants from WES data https://github.com/gedoardo83/ GARFIELD-NGS

Intelli-NGS ANN
To define good and bad variants calls from

Ion Torrent sequencer data
https://github.com/aditya-88/intel li-ngs

DAVI (Deep Alignment and

Variant Identifica tion)
CNN + RNN To identify variants in NGS reads N/A

DeepSV CNN
To call genomic deletions by

visualizing sequence reads
https://github.com/CSuperlei/DeepSV

http://www.drive5.com/%20muscle/%20https:/www.ebi.ac.uk/T%20ools/msa/muscle/
http://www.drive5.com/%20muscle/%20https:/www.ebi.ac.uk/T%20ools/msa/muscle/
http://www.drive5.com/%20muscle/%20https:/www.ebi.ac.uk/T%20ools/msa/muscle/
http://www.drive5.com/%20muscle/%20https:/www.ebi.ac.uk/T%20ools/msa/muscle/
http://msa.sbc.su.se/cgi%20bin/msa.cgi%20https:/www.ebi.ac.uk/T%20ools/msa/kalign/
http://msa.sbc.su.se/cgi%20bin/msa.cgi%20https:/www.ebi.ac.uk/T%20ools/msa/kalign/
http://msa.sbc.su.se/cgi%20bin/msa.cgi%20https:/www.ebi.ac.uk/T%20ools/msa/kalign/
http://msa.sbc.su.se/cgi%20bin/msa.cgi%20https:/www.ebi.ac.uk/T%20ools/msa/kalign/
http://msa.sbc.su.se/cgi%20bin/msa.cgi%20https:/www.ebi.ac.uk/T%20ools/msa/kalign/
http://msa.sbc.su.se/cgi%20bin/msa.cgi%20https:/www.ebi.ac.uk/T%20ools/msa/kalign/
http://msa.sbc.su.se/cgi%20bin/msa.cgi%20https:/www.ebi.ac.uk/T%20ools/msa/kalign/
http://msa.sbc.su.se/cgi%20bin/msa.cgi%20https:/www.ebi.ac.uk/T%20ools/msa/kalign/
https://github.com/aquaskyline/Clair%20voyante
https://github.com/google/deepv%20ariant
https://github.com/google/deepv%20ariant
https://github.com/gedoardo83/%20GARFIELD-NGS
https://github.com/aditya-88/intel%20li-ngs
https://github.com/CSuperlei/DeepSV


TABLE 3. From left to right the columns represent the DLmodel

Name DL model Omics data Purpose/Prediction Accuracy

DeepTarget RNN miRNA-mRNA pairing Target Prediction 0,96

DeepMirGene LSTM Positive pre-miRNA and non-miRNA miRNA Target 0.89 Sensitivity

DeepNet

ANN RNA-Seq Control-cases -0.7

AE Time-series Gene Expression Pre-processing step for Clustering

AE cDNA Microarrays
Predict the Organization of Transcriptomic

Machinery

ADAGE AE Gene Expression
Identification/ Reconstruction

of Biological Signals

eADAGE AE Gene Expression Identification of Biological Patterns

D-GEX RNN Expression of Landmark Genes Gene Expression Inference Overall, Error 0.3204±0.0879

DeepChrome CNN Histone Modifications Classify Gene Expression
Average area under the curve

(AUC)=0.80

AttentiveChrome LSTM Histone Modifications Classify Gene Expression Average AUC=0.81

Multimodaldeep

belief network
DBN

Gene expression, DNA Methylation and

miRNA Expression
Identification of Key Genes and miRNAs

Average Correlations 0.91, 0.73 and

0.69 for the GE, DM and ME

DeepVariant

CNN Whole-genome Sequence Variant Caller 99,45% F1

ANN Cell-line with Drug Response Predict Drug Response 0.65 AUC

DeepFIGV CNN Whole-genome Sequence Predict Quantitative Epigenetic Variation
z-scores DNase rho=0.0802,

P=5.32e 16

DeePathology Multiple AEs mRNA and miRNA
Predict Tissue-of-origin,

Normal or Disease State and Cancer Type
99.4% Accuracy for Cancer Subtype

DeepCpG CNN Single Cell Methylation
Predicts Missing Methylation States and

Detects Sequence Motifs
89% AUC

CNNC ANN scRNA-seq Predicting Transcription Factor Target
~70% Accuracy for

Multiple Experiments

DanQ CNN and RNN DNA-seq
Predicting the Function of DNA Directly

from Sequence alone
AUC score ~70%

FBGAN GANs DNA-seq Optimize the Synthetic Gene Sequences Train accuracy 0.94 test accuracy 0.84



TABLE 4. Difference between RNA-FM and PlantRNA-FM

Component Transformer BERT

Architecture Type

Encoder-Decoder: The model consists of an encoder

to process input and a decoder to generate output.

Commonly used in tasks like machine translation.

Encoder-only: The model focuses only on the encoder part of Transformer,

making it more suitable for text-understanding tasks.

Attention Mechanism

Self-Attention + Multi-Head Attention:

Each token attends every other token in the sequence

to capture relationships, regardless of distance.

Self-Attention + Multi-Head Attention:

The same mechanism as Transformer but applied bidirectionally

to capture full contextual information.

Input Format

Full sequence input without masking:

The input is processed as-is,

without any part being hidden or modified.

Randomly masked input tokens (Masked Tokens):

15% of the input tokens are randomly replaced with a special [MASK] token,

forcing the model to learn from the surrounding context.

Pretraining Tasks

None: The original Transformer model does not

use a pretraining phase and is directly trained on

specific tasks like translation.

Masked Language Modeling (MLM) + Next Sentence Prediction (NSP):

Pretraining tasks that teach the model to predict missing words

and understand sentence relationships, respectively.

Output Type
Generative tasks: The model generates new sequences,

like translating a sentence from one language to another.

Understanding tasks: The model comprehends the input sequence

to perform tasks like text classification,

named entity recognition (NER), and question answering (QA).
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